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Vedo Alagić
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1 Introduction

1 Introduction

1.1 Definition: what is a stochastic process?

Random systems are of complex nature. Usually, such systems cannot be described by a single random

variable: they evolve in space and time. Description can be based on a family of random variables

{Xt = X(t, ·) : t ∈ T} where T is the index set (parameter set), e.g. T is the set of points in time and/or

space.

Examples:

- Energy consumption over time.

- Growth of population over time (demography!).

- Capital growth over time (stocks, portfolios, ...).

- Dynamics of queuing systems (in banks, shops, computer networks, access to URL’s, ...).

- Spatial structure of materials, substances, ... .

- Spatial structure of aquifers, oil and gas deposits.

- Spatio - temporal spread of pollution sources (oil spills, radioactive contamination, ...).

- Neurobiology: spatio - temporal brain activities ... .

Definition 1.1 A stochastic process means a family κ = {Xt = X(t, ·) : t ∈ T} of random variables Xt

which are defined on a joint probability space [Ω,L , P ]

Xt : Ω −→ E ∀t ∈ T

where T denotes the index set (parameter set) and E denotes the state space of the process κ.

Remark:

a) κ is called a discrete process if T = N (or Z).

b) For T = R+ (or T = R1), κ is called a continuous process.

c) For dim(T ) ≥ 2, κ is called a random field (subject of Master course on ”Spatial Statistics”).

d) For dim(E) ≥ 2, the elements of Xt of κ form a vector-valued random process (field).

Definition 1.2 Let κ = {X(t, ·) : t ∈ T} be a stochastic process defined on [Ω,L , P ] with index set T .

Then, for each ω ∈ Ω, the mapping

X(·, ω) : T −→ E with X(·, ω)(t) := X(t, ω)

is called the path (trajectory) of κ with respect to ω.
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1 Introduction 1.1 Definition: what is a stochastic process?

Remark: The mapping X(·, ·) defined on T × Ω is called the random function associated with κ. Its

sample space is formed by the set of all possible paths.

Geometric visualization:

Figure 1.1: κ can be interpreted as ”surface” defined over the T × Ω - plane.

Well known fact: Random variables X are completely characterized by their probability law PX (distri-

bution function FX). A ”similar” assertion holds for random processes:

Theorem 1.1 The random process κ = {X(t, ·) : t ∈ T} is completely determined by the family

Pκ := {P(Xt1 ,Xt2 ,...,Xtn ) : n ∈ N, t1, t2, . . . , tn︸ ︷︷ ︸
pairwise different

∈ T}

of all of its finite-dimensional distributions.

Problems:

- For increasing n these distributions are hard to determine.

- The random variables Xt1 , . . . , Xtn are not independent, i.e. P(Xt1 ,...,Xtn ) 6= PXt1 ⊗ · · · ⊗ PXtn and

thus, in general, F(Xt1 ,...,Xtn ) 6=
n∏
i=1

FXti .

- Dependence structure (correlation structure) is difficult to describe.
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1 Introduction 1.2 Projective families, Kolmogorov’s existence theorem

1.2 Projective families, Kolmogorov’s existence theorem

Clearly, there are some natural relationships between the finite dimensional distributions within Pκ. This,

in turn, means that not every possible family of probability measures

P = {P(t1,t2,...,tn) : n ∈ N; t1, t2, . . . , tn ∈ T p.w. different}

can serve as family of finite-dimensional distributions of a random process. The analysis of the requirements

on such a family leads to the concept of projective families, whereby we limit ourselves to E ⊆ R1.

Definition 1.3 A family P = {P(t1,t2,...,tn) : n ∈ N; t1, t2, . . . , tn ∈ T p.w. different} of probability

measures is called a projective family if it holds:

a) Symmetry: For all n ∈ N, all p.w. different t1, t2, . . . , tn ∈ T , all B1, B2, . . . , Bn ∈ L 1(σ− algebra of

the Borel sets of R1), and all permutations π of {1, 2, . . . , n}

P(tπ(1),tπ(2),...,tπ(n))(Bπ(1) ×Bπ(2) × . . .×Bπ(n)) = P(t1,t2,...,tn)(B1 ×B2 × . . .×Bn).

b) Consistency: For all n ∈ N, all p.w. different t1, t2, . . . tn, tn+1 ∈ T , and all B1, B2, . . . , Bn ∈ L 1

P(t1,t2,...,tn,tn+1)(B1 ×B2 × . . .×Bn × R1) = P(t1,t2,...,tn)(B1 ×B2 × . . .×Bn).

Remark:

a) Symmetry thus means permutation invariance of the distributions.

b) Consistency means compatibility w.r.t. marginalization, i.e. all marginal distributions are proper.

Illustration of consistency: n = 1, B1 = (−∞, a] for some a ∈ R1

⇒
b)

P(t1,t2)(B1 × R1) =

a∫
−∞

+∞∫
−∞

dP(t1,t2)(x, y) =

a∫
−∞

dPt1(x) = Pt1(B1).

In more familiar terms: b) requires the existence of a random vector (X1, X2) with cdf F(X1,X2) such that

P(t1,t2)(B1 × R1) = F(X1,X2)(a,∞) =

a∫
−∞

+∞∫
−∞

dF(X1,X2)(x1, x2) =

a∫
−∞

dFX1(x1) = FX1(a)

where FX1 is the marginal distribution of X1.

Corollary 1.1 The symmetry property implies that a projective family P with T ⊆ R1 is completely

determined by the subfamily P ′ = {P(t1,t2,...,tn) : n ∈ N; t1 < t2 < · · · < tn ∈ T} (in the sequel we

therefore identify P and P ′).
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1 Introduction 1.2 Projective families, Kolmogorov’s existence theorem

The following theorem plays a central role in the theory of stochastic processes. Its proof is beyond the

scope of our course, it can be found e.g. in P. Billingsley: Probability and Measure, 3rd ed., Wiley, New

York 1995.

Theorem 1.2 (Kolmogorov’s existence theorem) Let

P = {P(t1,t2,...,tn) : n ∈ N; t1, t2, . . . , tn ∈ T p.w. different}

be a projective family. Then there exists a probability space [Ω,L , P ] and a stochastic process

κ = {X(t, ·) : t ∈ T} (with state space E ⊆ R1) defined on this space such that, for all n ∈ N and

p.w. different t1, t2, . . . , tn ∈ T it holds

P(Xt1 ,Xt2 ,...,Xtn ) = P(t1,t2,...,tn).

Roughly spoken: every projective family of measures forms the family of finite-dimensional distribution

of some suitable stochastic process.

Remark: More generally, Kolmogorov’s existence theorem holds for projective families and stochastic

processes for which the state space E is a Banach space (endowed with the Borel-σ-algebra of open

subsets of E).

Example 1.1 (Projective family associated with the Poisson process) Let λ > 0. The family

P = {P(t1,t2,...,tn) : n ∈ N; t1 < t2 < · · · < tn ∈ R+}

of discrete probability measures with densities (with respect to the counting measure)

f(t1,t2,...,tn)(x1, x2, . . . , xn) :=


n∏
i=1

[λ(ti−ti−1)]xi−xi−1

(xi−xi−1)! e−λ(ti−ti−1) if x1 ≤ x2 ≤ · · · ≤ xn ∈ N

0, else

where t0 := 0, x0 := 0, is symmetric and consistent.

Every stochastic process having this family as family of finite-dimensional distributions is called

Poisson process with parameter λ. ♦

Interpretation: PP (λ) is a random point configuration obtained when rolling a dice and, for each in-

finitesimal interval [t, t+ dt), a decision is made, independently of the preceding results, whether to place

a ”point” in to this interval. Identify ”points” with random events.

Define N(T ) = Random number of points (events) in the interval (0, t], e.g. # radioactive decays, # of

costumers, vehicles etc.

Then it holds:

P ({N(t1) = x1} ∩ . . . ∩ {N(tn) = xn}) =
n∏
i=1

[λ(ti − ti−1)]xi−xi−1

(xi − xi−1)!
e−λ(ti−ti−1)

for all configurations 0 =: t0 < t1 < · · · < tn ∈ R+ and 0 := x0 ≤ x1 ≤ · · · ≤ xn ∈ N.
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1 Introduction 1.3 Classification of stochastic process

Example 1.2 (Projective family associated with the Wiener Process (Brownian motion)) Let

σ > 0. The family P = {P(t1,t2,...,tn) : n ∈ N; t1 < t2 < · · · < tn ∈ R+} of continuous probability

measures with densities (w.r.t. the Lebesgue measure)

f(t1,t2,...,tn)(x1, x2, . . . , xn) :=

n∏
i=1

[2πσ2(ti − ti−1)]−
1
2 exp

(
− (xi − xi−1)2

2σ2(ti − ti−1)

)

where t0 := 0, x0 := 0, is symmetric and consistent.

Every stochastic process having this family as family of finite-dimensional distributions is called

Brownian motion1 (process) or Wiener process2. ♦

Interpretation: Brownian motion is a stochastic process {X(t, ·) : t ≥ 0} with the properties

a) X(t+ ∆t)−X(t) ∼ N(0, σ2∆t); t > 0,∆t > 0.

b) For any pair of disjoint intervals (t1, t2] and (t3, t4] with 0 ≤ t1 < t2 ≤ t3 < t4 the increments

[X(t4, ·)−X(x3, ·)] and [X(t2, ·)−X(x1, ·)] are (stochastically) independent. Correspondingly, for all

n ≥ 2 
Xt1 −Xt0

Xt2 −Xt1
...

Xtn −Xtn−1

 ∼ Nn(0, σ2D)

where t0 = 0 and D = diag(t1 − t0, t2 − t1, . . . , tn − tn−1).

c) The paths of the process are continuous functions of the time.

Roughly spoken: Brownian motion is a stochastic process with independent and normally distributed

increments and given initial state x0 ∈ R1.

Many applications in stochastic finance: modeling the dynamics of stokes, currencies, interest rates etc.

Basic building blocks of stochastic differential equations, stochastic integrals in physics, chemistry, biology,

etc.

1.3 Classification of stochastic process

Let κ = {Xt = X(t, ·) : t ∈ T}, T - index set, Xt : [Ω,L ]→ [E, ε], E- state space, ε- Borel σ-algebra of

open subsets of E.

Here we will consider the (most important) special cases where E ⊆ R1(ε ⊆ L 1) and

• T is discrete (T = Z or T = N) : κ = discrete stochastic process.

• T is continuous (T = R1 or T = R+) : κ = continuous stochastic process.

1Motion of suspended particles (Robert Brown 1827).
2Norbert Wiener 1923 established mathematical foundations.
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1 Introduction 1.3 Classification of stochastic process

• If E is discrete (E ⊆ Z) : κ = stochastic chain.

Classification:

Figure 1.2: Classification of stochastic processes

Most important and most useful class of stochastic processes in applications are Markov processes3.

Markov property (roughly spoken): Future only depends on present states, not on past records.

Examples:

a) Gains/losses in a casino.

b) Sequence of cards after shuffling.

c) Sequence of generation.

d) More general: branching processes.

3Date back to A. N. Markov 1906 - a student of Chebyshev.
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1 Introduction 1.3 Classification of stochastic process

Figure 1.3: Generation tree

In general: κ = {Xt : t ∈ T} with Xt : [Ω,L ]→ [E, ε] is called a Markov process if it holds

P (Xtn+1 ∈ En+1|Xtn ∈ En, Xtn−1 ∈ En−1, . . . , Xt1 ∈ E1) = P (Xtn+1 ∈ En+1|Xtn ∈ En)

∀n ≥ 1,
n+1
∀
i=1

Ei ∈ ε,
n+1
∀
i=1

ti ∈ T : t1 < t2 < . . . < tn < tn+1.

Special cases: For E = R1(ε ∈ L 1) : κ - real valued Markov process, for E = Z : κ - Markov chain.
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2 Discrete Markov chain

2 Discrete Markov chain

In this chapter: both E (state space) and T (index set) are discrete. Without loss of generality: T ⊆ N,

E ⊆ Z⇒ κ = {Xk}k=0,1,2,... sequence of discrete random variables. Xk then describes the random state

at time k.

2.1 Introductory example

Let us consider the following version of:

Gambler’s ruin: Sequence of (independent) games or lotteries with:

(i) X0 = x0, 0 < x0 < K; starting capital at time k = 0,

(ii) in the k−th game (k ≥ 1) we gain a unit with probability p, 0 < p < 1 and lose a unit with probability

q = 1− p,

(iii) we stop whenever our capital is zero or has reached a predetermined amount K ∈ N.

Obviously: {Xk}k=0,1,2,... is a Markov Chain (MC) with E = {0, 1, 2, . . . ,K}, T = N.

1st problem: one - step probabilities for a transition from i ∈ E to j ∈ E in the n - th game (step):

p
(m−1,m)
j,j+1 := P (Xm = j + 1|Xm−1 = j) = p for m = 1, 2, . . . ; 1 ≤ j ≤ K − 1

p
(m−1,m)
0j := 0, ∀j ∈ {1, . . . ,K}, ∀m ≥ 1

p
(m−1,m)
00 := 1, p

(m−1,m)
KK = 1, ∀m ≥ 1

p
(m−1,m)
Kj := 0, ∀j ∈ {0, . . . ,K − 1},∀m ≥ 1

p
(m−1,m)
jj := 0, ∀j ∈ {1, . . . ,K − 1},∀m ≥ 1

p
(m−1,m)
j,j−1 := P (Xm = j − 1|Xm−1 = j) = 1− p for 1 ≤ j ≤ K − 1, ∀m ≥ 1

p
(m−1,m)
i,j := P (Xm = j|Xm−1 = i) = 0 for |i− j| ≥ 2.

Conclusions:

a) The sequence {Xk}k=0,1,2,... of gains is not independent.

b) The one - step transition probabilities p
(m−1,m)
ij do not depend on m, we write

p
(m−1,m)
ij = p

(1)
ij ,∀m ≥ 1, ∀i, j ∈ E.
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2 Discrete Markov chain 2.1 Introductory example

c) The matrix of one - step transition probabilities

P (1) = (p
(1)
ij )i,j=0,...,K =



0 1 2 3 · · · K − 2 K − 1 K

0 1 0 0 0 · · · 0 0 0

1 1− p 0 p 0 · · · 0 0 0

2 0 1− p 0 p · · · 0 0 0
...

...
. . .

. . .
. . .

. . .
...

... 0

K − 3 0 · · · · · · 1− p 0 p 0 0

K − 2 0 · · · · · · · · · 1− p 0 p 0

K − 1 0 · · · · · · · · · 0 1− p 0 p

K 0 · · · · · · · · · · · · 0 0 1


is a stochastic matrix, i.e.

p
(1)
ij ≥ 0, ∀i, j ∈ E∑

j∈E
p

(1)
ij = 1, ∀i ∈ E

(nonnegative entries, all rows sum to one).

2nd problem: Are there higher order dependencies (higher then of first order)?

Illustration:

Figure 2.1: For two intermediate steps.

P (Xk = j|Xk−1 = ik−1, Xk−2 = ik−2, . . . , X0 = i0) = P (Xk = j|Xk−1 = ik−1)

There are only 1st order dependencies - we then say that the chain κ = {Xk}k=0,1,2,... has a 1st order

Markov property.

Note, however, that, in general:

P (Xk = j|Xk−1 = i) 6= P (Xk = j),∀i, j ∈ E,∀k ≥ 0

(Equality would imply stochastic independence of the r.v.s. Xk! Observe that the games are independent,

but not the gains (capital growth) Xk).
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2 Discrete Markov chain 2.2 Basic definitions

2.2 Basic definitions

Definition 2.1 A stochastic chain κ = {Xk}k=0,1,2,... defined on a probability space [Ω,L , P ] is called a

discrete Markov chain (DMC) with state space E if and only if it holds:

(i) E is countable and for all k ∈ N : P (Xk ∈ E) = 1,

(ii) for all k ∈ N and i0, i1, . . . , ik, ik+1 ∈ E :

P (Xk+1 = ik+1|Xk = ik, Xk−1 = ik−1, . . . , X0 = i0) = P (Xk+1 = ik+1|Xk = ik).

Note: More precisely, (ii) describes the 1st order Markov property.

Denotations: Let κ = {Xk}k=0,1,2,... be a DMC.

a) For all k ∈ N we denote

p(k) = (P (Xk = j))j∈E

the state vector of (marginal) probabilities at time k.

b) For all k, l ∈ N, l > k, we denote

P (k, l) := (p
(k,l)
i,j )i,j∈E = (P (Xl = j|Xk = i))i,j∈E

the transition matrix of κ from (time) k to l.

In particular, for k = 0 we call

p(0) = (P (X0 = j))j∈E = (pj(0))j∈E

the initial state distribution of κ. Further, P (k, k + 1) is called the one - step transition matrix at the

(k + 1)st transition.

Theorem 2.1 Let κ be a DMC with state space E. Then it holds for all k ∈ N and i0, i1, . . . , ik ∈ E:

P (X0 = i0, X1 = i1, . . . , Xk = ik) = p
(k−1,k)
ik−1,ik

· . . . · p(0,1)
i0,i1
· p(0)
i0
.

Remark upon the proof: this follows immediately from the multiplication theorem:

P (A0 ∩A1 ∩ · · · ∩Ak) = P (Ak|Ak−1 ∩ · · · ∩A0) · P (Ak−1|Ak−2 ∩ · · · ∩A0) · . . . · P (A1|A0) · P (A0)

for events Aj(= {Xj = ij}); j = 0, . . . , k; and observing the (first order) Markov property:

P (A0 ∩A1 ∩ · · · ∩Ak) = P (Ak|Ak−1) · P (Ak−1|Ak−2) · . . . · P (A1|A0) · P (A0).

Corollary 2.1 All finite - dimensional distributions P(X0,X1,...,Xk) and thus the stochastic behaviour of the

whole DMC κ are completely determined by the initial state distribution p(0) and the corresponding one

- step transition matrices

P (0, 1), P (1, 2), . . . , P (k − 1, k).
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2 Discrete Markov chain 2.2 Basic definitions

This characterization is often utilized in practical applications: First one finds p(0) and determines the one

- step transition matrices and then, assuming the Markov property, one is able to model the stochastic

system under consideration as a Markov Chain. The validity of the Markov property must be checked,

however, carefully.

Very often, transition probabilities p
(k,l)
i,j do not depend on the particular instances k, l ∈ T , but only on

the number of steps n = l − k to be taken. In this case, we call

p
(n)
i,j := p

(k,k+n)
i,j = P (Xk+n = j|Xk = i)

the n-step transition probability from i to j;n ≥ 1.

Definition 2.2 A (first order) DMC is said to be homogeneous, if it holds:

p
(k,k+n)
i,j =: p

(n)
i,j ,∀i, j ∈ E,∀k, n ∈ N.

Thus, for a homogeneous DMC (HDMC for short), the starting time k is irrelevant, only the number of

transition steps matters.

Denotations: P (n) = (p
(n)
ij ), n - step transition matrix; in particular: P (1) =: P - one step transition

matrix.

Lemma 2.1 a) P (0) = (p
(0)
ij ) = (δij)i,j∈E = Is where s = |E|.

b) p
(n+1)
ij =

∑
k∈E

p
(n)
ik p

(1)
kj , ∀n ≥ 1, ∀i, j ∈ E (special case of Chapman - Kolmogorov equation, see Theorem

2.2).

Proof:

a) Is trivial.

b) We make use of the following identity for events B,C and complete systems {Ak} of events:

P (B|C) =
∑
k

P (Ak ∩B|C) =
∑
k

P (Ak ∩B ∩ C)

P (C)
=
∑
k

P (Ak ∩B ∩ C)

P (C)
· P (Ak ∩ C)

P (Ak ∩ C)

=
∑
k

P (Ak ∩B ∩ C)

P (Ak ∩ C)
· P (Ak ∩ C)

P (C)

=
∑
k

P (B|Ak ∩ C) · P (Ak|C) (*)

Now, consider p
(n+1)
ij = P (Xl+n+1 = j︸ ︷︷ ︸

B

|Xl = i︸ ︷︷ ︸
C

) with an arbitrary l ≥ 0.

Obviously, {Ak} = {Xl+n = k}k∈E defines a complete system of events (at time l + n). Applying the

11



2 Discrete Markov chain 2.2 Basic definitions

above identity (*) we get:

p
(n+1)
ij = P (

B
Xl+n+1 = j

|
|

C
Xl = i)

=
∑
k∈E

P (
B

Xl+n+1 = j
|
|

Ak ∩ C

Xl+n = k,Xl = i) · P (
Ak

Xl+n = k
|
|

C
Xl = i)

[Markov property] =
∑
k∈E

P (Xl+n+1 = j|Xl+n = k) · P (Xl+n = k|Xl = i)

[Homogeneity] =
∑
k∈E

p
(n)
ik p

(1)
kj .

In matrix form Lemma 2.1 b) reads:

P (n+1) = P (n) · P = P (n−1) · P · P = . . .

Corollary 2.2 P (n) = Pn, ∀n ≥ 0.

Observing that p(k)T = p(k − 1)TP and using an induction argument, we may summarize our findings as

follows.

Theorem 2.2 (Chapman - Kolmogorov Equation) Let κ = {Xk}k=0,1,2,... be a homogeneous DMC

with state space E. Then it holds:

a) p(k + n)T = p(k)TPn,∀k, n ∈ N
b) P (k+n) = P (k)P (n) = P k+n,∀k, n ∈ N.

Remark: More generally, for a DMC not necessarily being homogeneous, we have:

a) p(k + n)T = p(k)TP (k, k + n)

b) P (k, k + n) = P (k, k + l)P (k + l, k + n),∀k, l, n ∈ N with 0 ≤ l < n.

Note: All powers P (n) = Pn are stochastic matrices, n = 0, 1, 2, . . ..

Example 2.1 (Introductory example 2.1 continued) Let K = 4, i.e. E = {0, 1, 2, 3, 4}

P (1) =


1 0 0 0 0

q 0 p 0 0

0 q 0 p 0

0 0 q 0 p

0 0 0 0 1

 = P implies

12



2 Discrete Markov chain 2.2 Basic definitions

P (2) = P 2 =


1 0 0 0 0

q pq 0 p2 0

q2 0 2pq 0 p2

0 q2 0 pq p

0 0 0 0 1


in particular, for p = 0.5 we obtain

P 2 =


1 0 0 0 0

0.5 0.25 0 0.25 0

0.25 0 0.5 0 0.25

0 0.25 0 0.25 0.5

0 0 0 0 1


and with an initial state distribution

p(0) = (P (X0 = 0), P (X0 = 1), P (X0 = 2), P (X0 = 3), P (X0 = 4))T

= (0, 0.2, 0.5, 0.3, 0)T , say,

p(1)T = p(0)T · P = (0.1, 0.25, 0.25, 0.25, 0.15).

Thus, the initial state distribution has changed after the first transition, p(1) 6= p(0).

Proceeding further, we obtain e.g.

P (9) =


1 0 0 0 0

0.734 0 0.031 0 0

0.469 0.031 0 0.031 0.25

0.234 0 0 .031 0 0.5

0 0 0 0 1

 , p(9) =


0.451

0.016

0.016

0.016

0.501



♦
Are there limits lim

n→∞
P (n) and lim

n→∞
p(n), respectively?

Definition 2.3 The homogeneous DMC κ is said to have a stationary initial distribution if it holds

p(k) = p(0),∀k ≥ 1.

(In this case p(0) is also called a equilibrium state).

If a stationary initial distribution p(0) exists then it follows from Theorem 2.2 a) that it can be determined

as the solution to the linear equation system

p(0)TP = p(0)T

p(0)T 1s = 1 (normalization)

13



2 Discrete Markov chain 2.3 Typical examples of discrete MCs

where 1s is a vector of s ones, s = |E|. We will come back to this issue in Section 3.4, where we will also

make clear how p(0) relates to lim
n→∞

p(n).

2.3 Typical examples of discrete MCs

2.3.1 One dimensional random walk

Model: A particle is moving on the set of integers according to the following rules

(i) The particle starts at the origin, i.e. P (X0 = 0) = 1.

(ii) If, at time k ∈ N, the particle is in the state z ∈ Z then it jumps during the next time interval

(k, k + 1) with probability p, 0 < p < 1, to z + 1, and with probability q = 1− p to z − 1.

Figure 2.2: State diagram.

Obviously, this one-dimensional random walk constitutes a homogeneous DMC with state space E = Z,

initial state distribution p(0) = (. . . , 0, 1︸︷︷︸
X0=0

, 0︸︷︷︸
X0=1

, . . .)T and transition matrix

P =



. . . j = −2 j = −1 j = 0 j = 1 j = 2 . . . . . .
... . . . . . . . . . . . . . . . . . . . . . . . .

i = −1 . . . q 0 p 0 0 0 . . .

i = 0 . . . 0 q 0 p 0 0 . . .

i = 1 . . . 0 0 q 0 p 0 . . .
... . . . . . . . . . . . . . . . . . . . . . . . .


Interesting questions:

(i) What is the probability that the particle ever return to the origin and how long will it take to do so,

on the average? (recurrence time)

(ii) How long will it take, on the average, until the particle reaches the state z ∈ Z for the first time?

(1st passage time)

2.3.2 First modification: random walk with reflecting barriers

Model: As before, the particle is moving on E = Z according to a random walk, where, however, there are

now reflecting barriers at the states a ∈ Z, a < 0, and/or b ∈ Z,b > 0, respectively, at which the particle

14



2 Discrete Markov chain 2.3 Typical examples of discrete MCs

is reflected (like a pinball).

Illustration:

Figure 2.3: Just one reflecting barrier at a ∈ Z, a < 0.

We have a homogeneous DMC with state space E = {a, a+1, . . . , 0, 1, . . .} and the initial state distribution

p(0) = ( 0︸︷︷︸
X0=a

, . . . , 0, 1︸︷︷︸
X0=0

, 0, . . .)T

P =



j = a j = a+ 1 j = a+ 2 j = a+ 3 · · ·
i = a 0 1 0 0 0 · · ·
i = a+ 1 q 0 p 0 0 · · ·
i = a+ 2 0 q 0 p 0 · · ·
i = a+ 3 0 0 q 0 p · · ·
...

...
...

...
...

...
...


Questions:

(i) Do the state distribution vectors p(k) converge as k →∞, and if so, is it independent od the initial

state p(0)?

(ii) Is there an equilibrium state p = (pj)j∈E for which
∑
j∈E

pjpjk = pk, ∀k ∈ E?

2.3.3 Second modification: random walk with absorbing barriers

Model: random walk as in Section 2.3.1, but now there are barriers at the states a ∈ Z, a < 0, and

b ∈ Z, b > 0, where the particle gets absorbed and remains there, forever.

Illustration:

Figure 2.4: State diagram.

This forms a homogeneous DMC with finite state space E = {a, a+ 1, . . . , 0, 1, . . . , b− 1, b} , initial state

15



2 Discrete Markov chain 2.3 Typical examples of discrete MCs

p(0) = ( 0︸︷︷︸
a

, . . . , 0, 1︸︷︷︸
0

, 0, . . . , 0︸︷︷︸
b

) has finite length.

P =



j = a j = a+ 1 j = a+ 2 · · · j = b− 2 j = b− 1 j = b

i = a 1 0 0 · · · 0 0 0

i = a+ 1 q 0 p · · · 0 0 0
...

...
...

...
...

...
...

...

i = b− 1 0 0 0 · · · q 0 p

i = b 0 0 0 · · · 0 0 1


Questions:

a) What is the probability of absorption at state a ∈ Z(b ∈ Z)?

b) How long will it take, on the average, until the particle gets absorbed at all?

We will give a partial answer in Section 2.4.

Remark: The random walk and its modifications as considered before can be easily generalized to higher

dimensions. Consider:

Figure 2.5: Two - dimensional random walk on a regular grid.

pi ≥ 0 with p1 + p2 + p3 + p4 = 1. Particle starts at (x, y) = (0, 0). This is a 2D - homogeneous DMC.

Remark: Only in the symmetric case p1 = p2 = p3 = p4 = 1
4 we can guarantee recurrence to the origin

(0, 0), up Section 3.3.

2.3.4 Galton’s branching process

Model: Growth of a population in which the individuals of the k-th generation (k = 0, 1, 2, . . .) will

have zero, one, two, ... offspring with probabilities α0, α1, α2, . . .. The total number of offspring of the
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individuals of the k-th generation form the (k + 1)th generation. Originally, (generation k = 0) there is

only one individual:

Figure 2.6: Branching process.

p25 = α0α5 + α1α4 + α2α3 + α3α2 + α4α1 + α5α0.

This results in a homogeneous DMC {Xk}k=0,1,... with state space E = N, where Xk = i ∈ N means that

there are exactly i individuals at time k (k-th generation). Initial state distribution:

p(0) = (P (X0), P (X1), . . .)T = (0, 1, 0, . . .)T

Transition matrix P = (pij)i,j=0,1,... has elements

pij =


1 for i = 0, j = 0

0 for i = 0, j 6= 0∑
k1,k2,...,ki∈E
k1+k2+...+ki=j

αk1 · αk2 · . . . · αki else

Question: What is the probability of extinction of the population?

We’ll come back to this issue in Chapter 3.

2.4 Hitting times, absorption probabilities

Let κ = {Xk}k≥0 be a HDMC with transition matrix P = P (1).

Definition 2.4 For A ⊂ E, the random variable

HA : Ω→ {0, 1, 2, . . .} ∪ {∞}

given by

HA(ω) := inf{n ≥ 0 : Xn(ω) ∈ A}

is called the hitting time of the subset A of E. (Agreement: inf(∅) =∞.)

17



2 Discrete Markov chain 2.4 Hitting times, absorption probabilities

Consider the probability starting from i ∈ E that the MC κ ever hits A:

hAi = P (HA <∞|X0 = i).

When A consists of absorbing states, hAi is called the absorption probability. The mean time taken for κ
to reach A is given by:

tAi = E(HA|X0 = i) =

∞∑
k=0

kP (HA = k|X0 = i).

Less formally:

hAi = P (hit A|X0 = i),

tAi = E(time to hit A|X0 = i).

Remarkably, these quantities can be calculated explicitly by means of certain linear equations associated

with the transition matrix P .

Example 2.2 Let E = {1, 2, 3, 4} and consider the chain κ with state diagram:

Figure 2.7: State diagram.

Starting from X0 = 2, what is the probability of absorption in 4? How long does it take until the chain is

absorbed in 1 or 4?

Define:

hi(4) = P (hit 4|X0 = i),

tAi = E(time to hit A = {1, 4}|X0 = i).

Clearly,

h1(4) = P (hit 4|X0 = 1) = 0,

h4(4) = 1,

tA1 = tA4 = 0.

Now,

h2(4) =
1

2
h1(4) +

1

2
h3(4),

tA2 = 1 +
1

2
tA1 +

1

2
tA3 .

18



2 Discrete Markov chain 2.4 Hitting times, absorption probabilities

Similarly,

h3 =
1

2
h2 +

1

2
h4,

tA3 = 1 +
1

2
tA2 +

1

2
tA4

⇒ h2 =
1

2
h3 =

1

2

(
1

2
h2 +

1

2
h4

)
tA2 = 1 +

1

2
tA3 = 1 +

1

2

(
1 +

1

2
tA2

)
⇒ h2 =

1

3
, tA2 = 2 = tA3 , h3 =

2

3
.

♦

The general result for hitting probabilities reads:

Theorem 2.3 The vector of hitting probabilities hA = (hAi )i∈E is the minimal non - negative solution to

the system of linear equations:

hAi = 1 for i ∈ A

hAi =
∑
j∈E

pijh
A
j for i /∈ A.

Remark: Minimality means that if x = (xi)i∈E is another solution with xi ≥ 0 for all i, then xi ≥ hi for

all i.

Example 2.2 continued: h4 = 1, h2 = 1
2h1 + 1

2h3, h3 = 1
2h2 + 1

2h4, h1 was not determined, minimality

implies h1 = 0. ♦
In cases where E is infinite, the minimality condition is essential.

Example 2.3 Gambler’s ruin, no capital limit.

Figure 2.8: State diagram.

0 < p = 1− q < 1

p00 = 1, pi,i−1 = q, pi,i+1 = p for i = 1, 2, . . . .
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2 Discrete Markov chain 2.4 Hitting times, absorption probabilities

Resources of the casino are regarded as infinite. What is the probability that you leave broke?

hi = P ( hit 0|X0 = i)

h0 = 1

hi = phi+1 + qhi−1, i = 1, 2, . . .

If p 6= q this recurrence relation has a general solution hi = A+B( qp)i with constants A and B.

a) p < q (which is the case in most casinos)

⇒ B = 0 because of the restriction 0 ≤ hi ≤ 1

⇒ hi = 1 for all i.

b) p > q ⇒ observing that h0 = 1

hi = A+ (1−A)( qp)i nonnegativity of solution implies A ≥ 0. hi = ( qp)i provides the minimal solution.

c) p = q ⇒ general solution reads

hi = A+B(i)

Restriction 0 ≤ hi ≤ 1 forces B = 0, so hi = 1 for all i. ♦

Conclusion: For p ≤ q you are certain to end up broke (even in the ”fair” case p = q = 0.5). This

apparent paradox is called gambler’s ruin.

Remark: More generally, Theorem 2.3 holds for any closed set A ⊂ E (see Section 3.1, Def 3.3).

Absorption classes are special cases of closed sets.
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3 State classification of homogeneous DMCs

3 State classification of homogeneous DMCs

In this chapter, we assume, again:

E ⊆ Z, (discrete state space)

T ⊆ Z, (discrete index set, ”points” in time),

and, additionally, κ = {Xk}k=0,1,... to be homogeneous.

3.1 Communicating states, essential classes

Definition 3.1 a) The state j ∈ E is said to be reachable from the state i ∈ E (we write i  j, for

short) if p
(n)
ij > 0 for some n ≥ 1.

b) The states i, j ∈ E are said to be communicating (we write i! j, for short) if it holds: i  j and

j  i.

Agreement: i! i if and only if i i, i.e.
∞∑
n=1

p
(n)
ii > 0.

This way,! defines an equivalence relation and implies a decomposition of the state space E into disjoint

equivalence classes.

Definition 3.2 a) The state i ∈ E is said to be essential, if it holds: ∀j ∈ E : i j ⇒ j  i.

b) The state i ∈ E is said to be non - essential if it is not essential.

Denotation:

Mi = {j ∈ E : i j} = set of all states which can be reached from i,

Ci = {j ∈ E : i! j} = equivalence class of all states which are communicating with i.

Clearly, Ci ⊆Mi for all i ∈ E.

Corollary 3.1 Let i ∈ E be an essential state. Then it holds: Ci = Mi.

Therefore, if i ∈ E is essential, we call Ci an essential class.

Note: If i ∈ E is non - essential and i  j, this does not necessarily imply that j is non - essential as

well. However, it holds:

Corollary 3.2 If i ∈ E is non - essential, then each j ∈ Ci is non - essential.

Proof: Assume, there exists j ∈ Ci such that j is essential. Then, by Corollary 3.1, all k ∈ Ci are essential

states. This, in turn, implies that i is also essential, contradictory to the assumption of our corollary.

Consequently, ”non - essential” defines a class property, too. Therefore, if i ∈ E is non - essential, we call

Ci a non - essential class.

Corollary 3.3 If i ∈ E is non - essential, then it holds:

Ci ⊂Mi,

where Ci consists of all non - essential states which communicate with i and Mi consists of all essential
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and non - essential states which are reachable from i.

Definition 3.3 K ⊆ E is called a closed set of states if it holds:

pij = 0, ∀i ∈ K,∀j /∈ K,

or, equivalently, ∑
j∈K

pij = 1,∀i ∈ K.

Corollary 3.4 If K is closed, then we have:

p
(n)
ij = 0,∀i ∈ K,∀j /∈ K,∀n ≥ 1.

Remark upon the proof: For n = 2, it follows from Chapman Kolmogorov’s equation

p
(2)
ij =

∑
m∈E

pimpmj =
∑
m∈K

pim pmj︸︷︷︸
=0

+
∑
m/∈K

pim︸︷︷︸
=0

pmj

i.e. p
(2)
ij = 0 for all i ∈ K, j /∈ K. The proof then follows by complete induction.

Example 3.1 Find the communicating classes associated to the transition matrix:

P =



1
2

1
2 0 0 0 0

0 0 1 0 0 0
1
3 0 0 1

3
1
3 0

0 0 0 1
2

1
2 0

0 0 0 0 0 1

0 0 0 0 1 0


The solution is obvious from the state diagram:

Figure 3.1: State diagram.

M1 = {1, 2, 3, 4, 5, 6},M4 = {4, 5, 6},M5 = {5, 6}, but, C1 = {1, 2, 3}, C4 = {4}, C5 = {5, 6}, i.e. 3

communicating classes with only {5, 6} being closed (and essential). The states 1, 2, 3, 4 are non - essential.
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Corollary 3.4 says: there is no escape from a closed set!

Special case: absorbing state i ∈ E (for which p
(n)
ii = 1,∀n ≥ 1)

⇒ Ci = {i} are single - element classes being closed and essential.

Theorem 3.1 (i) Essential classes are closed.

(ii) Non - essential classes are not closed.

Proof:

(i) For essential classes, Ci = Mi (see Corollary 3.1). Mi is closed, however.

(ii) If i ∈ E is non essential, then there exists j ∈ E such that: i j and j�� i, i.e. j /∈ Ci. Now i j

implies that p
(n)
ij > 0 for some n ≥ 1. Thus, by Corollary 3.4, Ci is not closed.

Summary:

(1) E can be decomposed into disjoint equivalence classes of communicating states.

(2) Equivalence classes are either essential or non - essential.

(3) Essential classes are closed (and minimal).

(4) Non - essential classes are not closed. From such classes transitions can be made into other non -

essential classes or into essential classes, from which then there is no escape.

3.2 Irreducible chains

Definition 3.4 A homogeneous discrete Markov chain is said to be irreducible, if the state space E consists

of a single class of (communicating) essential states.

Equivalent formulations: The HDMC is irreducible

⇔ ∀i ∈ E : Ci = Mi = E, i. e. each state i ∈ E can be reached from any other state j ∈ E.

⇔ For each pair of states (i, j) there exists a finite sequence of intermediate states i1, i2, . . . , in ∈ E such

that: pii1 > 0, pi1i2 > 0, . . . , pinj > 0, i.e. i→ i1 → i2 → . . .→ in → j.

Conversely, if the state space E consists of at least two equivalent classes, then the HDMC is called

reducible.

We can decide on reducibility/irreducibility of a HDMC solely on the basis of the one - step transition

matrix P (1) = P . We ”simply” have to generate a (generalized) lower block - triangular structure, after

an appropriate reordering of rows and columns of P .

Theorem 3.2 (Decomposition of the state space E) The state space E of a HDMC can be uniquely

decomposed into k ≥ 0 (closed) essential classes B1, . . . , Bk and m ≥ 0 non - essential classes

Bk+1, . . . , Bk+m with k + m ≥ 1 such that transitions from states of a non - essential class can be

made only to other states within this class or to non - essential classes with smaller ordering number, or

to essential classes.
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3 State classification of homogeneous DMCs 3.2 Irreducible chains

This decomposition is equivalent to representing the transition matrix in the following form:

P =





Q11

O Q22

...
. . . O

O . . . Qkk

Qk+1,1 Qk+1,2 . . . . . . Qk+1,k+1

...

...
. . .

Qk+m,1 Qk+m,2 . . . . . . . . . Qk+m,k+m

↑ ↑ ↑ ↑ ↑
B1 B2 . . . Bk Bk+1 . . . Bk+m

where Qii 6= O are quadratic (i = 1, . . . , k + m) and Qij(i > j) are rectangular submatrices (which may

be null matrices).

Theorem 3.2 tells us that the classification of E into essential and non - essential classes can be achieved

by reordering of P .

Matrices of the above type are called decomposable whenever k +m ≥ 2.

Corollary 3.5 The HDMC is irreducible if and only if its transition matrix is not decomposable (i. e. if

and only if k +m = 1).

Remark: If E is finite state space then it holds k ≥ 1, i. e. than there exists at least one essential

state/class.

Example 3.2 (Previous example 3.1 from Section 3.1 cont’d) We may reorder the columns and rows

of P as follows:

k = 1 essential class B1 := {5, 6} (closed),

m = 2 non - essential classes B2 := {4}, B3 := {1, 2, 3} (not closed). ♦
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Example 3.3

E = {0, 1, 2, 3, 4, 5, 6, 7}

P =



1
3

2
3 0 0 0 0 0 0

1
2

1
2 0 0 0 0 0 0

0 0 1
3

2
3 0 0 0 0

0 0 2
3

1
3 0 0 0 0

0.4 0 0.2 0.1 0.1 0.2 0 0

0.1 0.2 0.1 0.2 0.3 0.1 0 0

0.1 0 0 0 0 0.2 0.1 0.6

0.1 0.1 0 0 0.1 0.2 0.3 0.2


P is already in a generalized lower triangular form. We conclude:

B1 = {0, 1}, B2 = {2, 3}; k = 2 essential classes;

B3 = {4, 5}, B4 = {6, 7};m = 2 non - essential classes.

p
(n)
ij = 0 for i ∈ B1 ∪B2, j ∈ B3 ∪B4;n ≥ 1, but:

pij > 0 for i ∈ B3 ∪B4, j ∈ B1 ∪B2 (transitions from non - essential to essential classes)

B1 and B2 are closed, B3 and B4 are not closed.

C0 = C1 = M0 = M1 = B1

C6 = {6, 7} = B4

M6 = {0, 5, 6, 7}, C6 ⊂M6.

♦

Remarks on irreducible matrices

Matrix A ∈ Rn×n is said to be reducible if there exists a permutation matrix Π such that:

ΠTAΠ =

[
A1(s,s)

O(s,n−s)

A2(n−s,s) A3(n−s,n−s)

]

with 1 ≤ s < n. Otherwise, A is irreducible4.

Equivalently: A is irreducible if B = A + A2 + · · · + An has non - zero entries, i.e. bij 6= 0 elements of

B = (bij) for all i, j = 1, . . . , n.

Theorem 3.3 Let κ = {Xk}k=0,1,2,... be a HDMC with finite state space E, |E| = n. The chain is

irreducible if

B =
n∑
k=1

P k > O

i.e. all bij > 0.

4R.Brualdi, H.Ryser: Combinatorial Matrix Theory, Cambridge University Press, New York 1991.
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3.3 Periodicity of HDMC’s

We are investigate whether there is a periodic behaviour for transitions i  i. Clearly, if p
(n)
ii > 0 for

some n ≥ 1, then it holds: p
(k·n)
ii > 0 for all k ≥ 1. This follows from Chapman - Kolmogorov’s equation

p
(k·n)
ii ≥ (p

(n)
ii )k > 0.

Definition 3.5 Let i ∈ E be such that i ! i, i.e. there is some n ≥ 1 such that p
(n)
ii > 0. The

greatest common divisor (gcd) of the set Ni = {n ∈ N : p
(n)
ii > 0} is called the period di of the state

i ∈ E : di = gcd(Ni).

Agreement: The period is not defined for states i ∈ E with i�� i, i. e. for states i with Ni = ∅.
The state i ∈ E with Ni 6= ∅ is said to be periodic if di > 1; it is said to be aperiodic if di = 1.

Example 3.4 The simple random walk as defined in Section 2.3.1 forms an irreducible homogeneous

discrete Markov chain with di = 2 for all i ∈ E = Z. ♦

Obviously, if p
(n)
ii > 0 for some n ≥ 1, then it must hold n = k · di for some k ≥ 1, i. e. n must be a

multiple of the period. Moreover, it is easily seen that periodicity is a class property.

Corollary 3.6 Let i ∈ E be a state of a HDMC with period di ≥ 1. Then all the states in the equivalence

class Ci have the same period: dj = di,∀j ∈ Ci.

For di ≥ 2 we say: Ci has the period di.

For di = 1 we say: Ci is aperiodic.

In particular, we define:

a) An irreducible HDMC is said to be periodic (or cyclic, respectively) if E consists of a single essential

class with period d > 1.

b) For d = 1 we call this chain aperiodic.

Example 3.5 (Example 3.2 from Section 3.2 cont’d) Computing the n−step transition matrices

(n = 2, 3, 4) we obtain:

p
(2)
55 = p

(4)
55 = 1 = p

(2)
66 = p

(4)
66 , p

(3)
55 = p

(3)
66 = 0

p
(2)
44 =

1

4
, p

(3)
44 =

1

8
, p

(4)
44 =

1

16

p
(2)
11 =

1

4
, p

(3)
11 = 0.2917, p

(4)
11 = 0.2292

p
(2)
22 = 0, p

(3)
22 =

1

6
, p

(4)
22 =

1

12

p
(2)
33 = 0, p

(3)
33 =

1

6
, p

(4)
33 =

1

12
.

Thus, B1 = {5, 6} has period d = 2, whereas B2 = {4} and B3 = {1, 2, 3} are both aperiodic, in

accordance with Corollary 3.5. ♦
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3 State classification of homogeneous DMCs 3.4 Recurrence and transience of states

3.4 Recurrence and transience of states

Assumption: At state i we start with probability 1, i.e. P (X0 = i) = 1.

Definition 3.6 (First passage probabilities)

f
(n)
ij := P (Xn = j,Xk 6= j for k = 1, . . . , n− 1|X0 = i)

probability that starting from state i, we are reaching after n steps the state j, for the first time.

Denotation:

ηij = random number of steps for reaching state j for the first time after starting at state i

(first passage time).

ηii = random number of steps for the first return into state i (recurrence time).

Corollary 3.7

f
(n)
ij = P (ηij = n).

Relationship between f
(n)
ij and p

(n)
ij :

f
(1)
ij = p

(1)
ij = pij

f
(0)
ij =

1 for i = j

0 else

= δij = p
(0)
ij

Theorem 3.4

p
(n)
ij =

n∑
k=0

f
(k)
ij p

(n−k)
jj ,∀n ≥ 1.

Denotation:

f∗ij :=

∞∑
n=1

f
(n)
ij = probability that starting from i, we will ever reach j.

f∗ii := probability that starting from i, we ever return to i.

Definition 3.7 The state i ∈ E of a HDMC is said to be:

a) recurrent ⇔ f∗ii = 1, i. e. we return to i with probability 1,

b) transient ⇔ f∗ii < 1.

Essential probabilistic tools for discussing recurrence/transience:

a) PGF (probability generating function)

Let X be discrete random variable taking values 0, 1, 2, . . . with probabilities
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3 State classification of homogeneous DMCs 3.4 Recurrence and transience of states

pk = P (X = k), k = 0, 1, . . .

Gx(s) := E(sx) =

∞∑
k=0

sk · pk, s ∈ [0, 1]

.

b) Abel’s limit theorem

Let
∞∑
n=0

an be a convergent series of real number an. Then we define f(x) :=
∞∑
n=0

anx
n, x ∈ [0, 1] that

converges and f(·) is continuous everywhere on [0, 1] with f(1) =
∞∑
n=0

an <∞.

Theorem 3.5 a) The state i is recurrent if and only if
∞∑
n=0

p
(n)
ii = +∞.

b) The state i is transient if and only if
∞∑
n=0

p
(n)
ii < +∞.

Remark upon the proof. Recall (Theorem 3.4): p
(n)
ij =

∑n
k=0 f

(k)
ij p

(n−k)
ij , ∀n ≥ 1. Define the following

PGF’s:

Fij(s) :=
∞∑
n=0

f
(n)
ij · s

n

Gij(s) :=

∞∑
n=0

p
(n)
ij · s

n

Th.3.4⇒ Gij(s) := δij + Fij(s)Gjj(s)

f∗ii :=
∞∑
n=0

f
(n)
ii = Fii(1);

Gii(1) := 1 + Fii(1)Gii(1)⇔ Fii(1) = 1− 1

Gii(1)

= 1− 1
∞∑
n=0

p
(n)
ii

= f∗ii.

f∗ii = 1⇔
∞∑
n=0

p
(n)
ii =∞

f∗ii < 1⇔
∞∑
n=0

p
(n)
ii <∞.

Corollary 3.8 Transience and recurrence are class properties, i. e. i recurrent (transient) ⇒ j is recurrent

(transient) for all j ∈ Ci.

Relationship between essential/non - essential classes:

a) i non - essential state ⇒ i is transient

b) i recurrent ⇒ i is essential state.
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3 State classification of homogeneous DMCs 3.4 Recurrence and transience of states

If E is a finite state space, then at least one state is recurrent.

Obviously: if j is transient ⇒ lim
n→∞

p
(n)
ij = 0,∀i ∈ E.

Subdivision of recurrent states:

i recurrent ⇒ f∗ii =

∞∑
n=1

f
(n)
ii = 1

ηii ∼
{ 1 2 · · · k · · ·
f

(1)
ii f

(2)
ii · · · f

(k)
ii · · ·

}
µi =

∞∑
k=1

k · f (k)
ii = E(ηii) = mean recurrence time.

Definition 3.8 A recurrent state i is said to be:

a) zero - recurrent (weakly - ergodic) if µi = +∞
b) positive recurrent (strongly - ergodic) if µi <∞.

Again: zero - recurrence and positive recurrence are also class properties.

Theorem 3.6 (Limit Theorem for DMC’s) Asume that κ = {Xk}k=0,1,... is recurrent, irreducible and

aperiodic with P (X0 = i) = 1 (i.e. initial state = i). Then it holds:

a) lim
n→∞

p
(n)
ii = 1

µi

b) lim
n→∞

p
(n)
ji = lim

n→∞
p

(n)
ii ,∀j ∈ E.

Example 3.6 (Recurrence/transience for simple random walk/s) Consider

Then

p
(2k)
ii > 0, ∀k ≥ 1

p
(2k+1)
ii = 0, ∀k ≥ 1

Simple random walk is irreducible with period d = 2.

p
(2n)
00 =

(
2n

n

)
pnqn =

(2n)!

n! · n!
pnqn = (Stirling’s formula: n! ∼ nn+ 1

2 · e−n
√

2π) =

=
(2n)2n+ 1

2 · e−2n ·
√

2π

nn+ 1
2 · e−n ·

√
2π · nn+ 1

2 · e−n ·
√

2π
pnqn =

(4pq)n√
πn
≤ 1√

πn

Hence,

∞∑
n=1

p
(2n)
00 =

∞∑
n=1

(4pq)n√
πn

=


∞∑
n=1

1√
πn

=∞ if p = q = 1
2

<∞ if p 6= q
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3 State classification of homogeneous DMCs 3.4 Recurrence and transience of states

That means: simple random walk is recurrent if and only if p = q = 1
2 and transient if and only if p 6= q.♦

Two dimensional random walk:

Figure 3.2: 2D Random walk.

pij =

1
4 if |i− j| = 1

0 otherwise

We start at (x, y) = (0, 0).

X+
k = orthogonal projection on y = +x

X−k = orthogonal projection on y = −x
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3 State classification of homogeneous DMCs 3.5 Ergodic states, long - term
behaviour of DMC’c

⇒ X+
k and X−k are independent simple symmetric random walks on 1√

2
Z.

Xk = (0, 0)⇔ X+
k = 0 = X−k

⇒ p
(2n)
00 =

[(
2n

n

)[
1

4

]n]2

∼ 1

πn

⇒
∞∑
n=1

p
(n)
00 = ∞

⇒ recurrent random walk (transient for the non - symmetric case).

Remark: for the 3D symmetric random walk with:

pij =

1
6 if |i− j| = 1

0 otherwise

we can show

p
(2n)
00 =

(
2n

n

)[
1

4

]n( n

mmm

)[
1

3

]n
∼ 1

2a3

[
6

n

] 3
2

∼ C

(πn)
3
2

where a =
√

2π, n = 3m, i. e. transience even in the symmetric case.

3.5 Ergodic states, long - term behaviour of DMC’c

The steady state (ergodic state) is defined by:

p∞ := lim
n→∞

p(n) = lim
n→∞

[P (Xn = i)]i∈E .

If p∞ exists then we call p∞ the vector of probabilities of ergodic states. It exists trivially, if we have a

stationary initial distribution: p(0) = p(1) = p(2) = . . ..

Recall: p(1)T = p(0)TP . In case of initial stationarity, this means: p(0)T = p(0)TP (linear equation

system): 1p(0) = 1, p(0) ≥ 0. Clearly, if initial distribution p(0) exists, then it is also an ergodic state:

lim
n→∞

p(n) = p(0).

Question: Are the limiting probabilities (stable system) independent of the initial distribution p(0)? Yes!

After n+ 1 steps:

‖p(n+ 1)− p(n)‖ < ε.
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That means: if p∞ exists, then it must hold:
pT∞ = pT∞P we don’t have changes after n+ 1 steps

1Ts p∞ = 1, s = |E|

p∞ ≥ 0

(**)

Theorem 3.7 Let be given a HDMC with transition matrix (P (1)). Let further denote Epr the set of all

positive recurrent states.

a) If Epr = ∅ ⇒ there exists no ergodic states.

b) If Epr 6= ∅ and Epr consists of at least 2 equivalent classes, then there exist infinitely many solutions

of (**).

c) If Epr 6= ∅ and Epr consists of only one class, then there exists a unique solution:

p∞ = (Is − P T + 1s1
T
s )−11s.

Example 3.7 Consider the following diagram:

Figure 3.3: Flip-flop circuit.

Probability transition matrix:

P =

[
1− a a

b 1− b

]
=

[
p00 p01

p10 p11

]

We have two cases:

a) a = b = 1

P =

[
0 1

1 0

]
, P 2 =

[
1 0

0 1

]
, P + P 2 =

[
1 1

1 1

]

irreducible, d = 2 period.

P 2n+1 = P, P 2n = I2 ⇒ lim
n→∞

P (n) does not exist.

b) 0 < a+ b < 2; ab 6= 0⇒ P indecomposable, i. e. Markov chain is irreducible, one essential class with

period d = 1.
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P = UΛU−1 mode decomposition (U - matrix of eigen vectors, Λ - matrix of eigen values).

Pn = UΛnU−1,Λ = diag (λ1, λ2, . . . , λs, ), s = |E|.

|P − λI2| = 0 ⇔

∣∣∣∣∣ 1− a− λ a

b 1− b− λ

∣∣∣∣∣ = 0

⇔ (1− a− λ)(1− b− λ)− ab = 0

⇒ λ1 = 1, λ2 = 1− a− b.

(P − λ1I) · u1 =

[
−a a

b −b

]
u1 =

(
0

0

)
⇒ u1 =

(
1

1

)

(P − λ2I2) · u2 =

[
b a

b a

]
u2 =

(
0

0

)
⇒ u2 =

(
1

− b
a

)

Λn =

[
1 0

0 (1− a− b)n

]

U =

[
1 1

1 − b
a

]
, U−1 =

1

1 + b
a

[
b
a 1

1 −1

]
⇒ Pn = UΛnU−1

=
1

1 + b
a

[
1 1

1 − b
a

][
1 0

0 (1− a− b)n

][
b
a 1

1 −1

]

=
1

a+ b

[
b a

b a

]
+

(1− a− b)n

a+ b

[
a −a
−b b

]
, |1− a− b| < 1

⇒ lim
n→∞

Pn =
1

a+ b

[
b a

b a

]

lim
n→∞

p
(n)
00 =

b

a+ b
,

lim
n→∞

p
(n)
11 =

a

a+ b
.
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Mean recurrence times:

f
(1)
00 = P (η00 = 1) = 1− a

µ00 = E(η00)

f
(2)
00 = P (η00 = 2) = ab

f
(n)
00 = P (η00 = n) = ab(1− b)n−2, n ≥ 2

µ0 = E(η00) =

∞∑
n=1

nP (η00 = n) =

∞∑
n=1

nf
(n)
00 = (1− a) +

∞∑
n=2

n · ab(1− b)n−2

[n=k+1]
= 1− a+ ab

∞∑
k=1

(k + 1)(1− b)k−1 = 1− a+ ab
∞∑
k=1

(1− b)k−1 + ab
∞∑
k=1

k(1− b)k−1

= 1− a+ ab
1

1− (1− b)
+ a

∞∑
k=1

kb(1− b)k−1

︸ ︷︷ ︸
= 1
b
,EX with X∼Geo(b)

= 1− a+ a+
a

b
= 1 +

a

b
=
a+ b

b

P (η11 = 1) = f
(1)
11 = 1− b

P (η11 = n) = f
(n)
11 = ab(1− a)n−2, n ≥ 2

⇒ µ1 = E(η11) =
∞∑
n=1

nf
(n)
11 = · · · = a+ b

a

⇒ both state are positive recurrent,

Epr = E = {0, 1}

⇒ exists only one (strong) ergodic state, p = p(0) = (p∗0, p
∗
1)T

(p∗0, p
∗
1) = (p∗0, p

∗
1)

[
1− a a

b 1− b

]
p∗0 = (1− a)p∗0 + bp∗1 ⇔ ap∗0 = bp∗1

p∗1 = ap∗0 + (1− b)p∗1 ⇔ ap∗0 = bp∗1

⇒ p∗0 =
b

a+ b
=

1

µ0
= lim

n→∞
p

(n)
00

p∗1 =
a

a+ b
=

1

µ1
= lim

n→∞
p

(n)
11 .

The ergodic state (p∗0, p
∗
1)T is independent from the stationary state distribution:

pT
(0)

= p(0)TP = p(0)T · lim
n→∞

Pn = pT
(0)

[
b

a+b
a
a+b

b
a+b

a
a+b

]
=

[
b

a+ b
,

a

a+ b

]
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behaviour of DMC’c

for arbitrary p(0) = (p0, p1) such that p0, p1 ≥ 0, p0 + p1 = 1. ♦

Remark: The preceding example can be generalized for every finite irreducible HDMC. The following holds:

Epr = E, i.e. in finite irreducible HDMC all states are recurrent.

If the finite HDMC is reducible, then there are transient and positive recurrent states, but no zero-recurrent

states.

Example 3.8 Dynamics of species after introduction of new or alien species.

At the end of the 19th century gray squirrels were first introduced in Great Britain. They quickly took over

areas occupied by the native red squirrel. Data from different regions of GB were collected. Lets denote

with:

• R regions with red squirrels only,

• G regions with gray squirrels only,

• B regions with both squirrels,

• A regions with absence of squirrels.

For example, let for a 1 Year period, the transition between states be (estimated):

pRR = 0.8797, pRG = 0.0382, . . .. The transition matrix is given by:

P =



R=̂1 G=̂2 B=̂3 A=̂4

0.8797 0.0382 0.0527 0.0008

0.0212 0.8002 0.0041 0.0143

0.0981 0.0273 0.8802 0.0527

0.0010 0.1343 0.0630 0.9322


P > 0, i.e. P is regular, hence κ is irreducible and aperiodic. The eigenvector for the eigenvalue λ(P ) = 1

is:

p∞ = ( 0.1705, 0.0560, 0.3421, 0.4314)T

Red Gray Both Neither

The mean recurrent times µi = 1
p∗i
, i = 1, 2, 3, 4 are given by:

µ = ( 5.865, 17.857, 2.923, 2.318)T

R G B A

Interpretation: The area with red squirrels may change to other states (G,B,A), but on average, will be

populated with red squirrels again after about six years. ♦

Remark: For κ with finite E and P > 0, i.e. pij > 0, ∀i, j ∈ E, exists a ergodic state (steady state)

p∞ which is unique (for P > 0 is P indecomposable). This holds, in general, for so called regular Markov

chains. We call κ = {Xk}k=0,1,... regular if and only if ∃n ≥ 1 : p
(n)
ij > 0,∀i, j ∈ E. Clearly, if a HDMC has

a absorbing state, then it can’t be regular. Long - term behaviour of systems can be completely described
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by the following theorem:

Theorem 3.8 Let κ = {Xk}k=1,2,... be an irreducible and recurrent DMC with state space E ⊆ Z, and

further, let p∗i (i ∈ Z) be (the) ergodic state probabilities, i.e. the components of p∞. Moreover, let g(·)
be a bounded function on Z. Then it holds:

lim
n→∞

1

n

n∑
k=0

g(Xk) =
∑
i∈Z

p∗i g(i).

Example: Production system with 3 states:

1 =̂ full performance,

2 =̂ reduced productivity,

3 =̂ system failure (repairs).

State changes might occur at each hour (discretization step).

Xk = State of the system at time k = 0, 1, 2, . . . ⇒ κ = {Xk}k=0,1,2,... is a HDMC with probability

transition matrix:  0.8 0.1 0.1

0 0.6 0.4

0.8 0 0.2

 .
Gain/loss function g:

g(1) = 1200AC/h

g(2) = 750AC/h

g(3) = −150AC/h

Do we have a unique solution?

P 2 =

 0.72 0.14 0.14

0.32 0.36 0.32

0.80 0.08 0.12

 > 0

Clearly, P + P 2 + P 3 > 0→ {Xk}k=0,1,2,... is irreducible, so that we have a unique solution p∗.

p∞ = (p∗1, p
∗
2, p
∗
3) is uniquely determined.

(I3 − P T + J )p∞ = 13.
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Solution in R:

> P=matrix(c(0.8,0,0.8,0.1,0.6,0,0.1,0.4,0.2),3,3)

> P%*%P # all entries are positive, i.e. the chain is irreducible

[,1] [,2] [,3]

[1,] 0.72 0.14 0.14

[2,] 0.32 0.36 0.32

[3,] 0.80 0.08 0.12

> I3=diag(c(1,1,1))

> J=matrix(rep(1,9),3,3)

> b=c(1,1,1)

> pstar=solve(I3-t(P)+J,b)

> pstar # unique ergodic probabilities

[1] 0.6666667 0.1666667 0.1666667

> g=c(1200,750,-150)

> Gain=sum(pstar*g)

> Gain

[1] 900

Thus, the gain is 900 AC/h.
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4 Continuous Markov Chains (CMC)

4.1 Definition

Recall: a stochastic process κ = {Xt : t ∈ T} is a family of random variables defined on a joint measurable

space [E,M ], where T is the index set and E the state space.

In this chapter the state space will be E ⊆ Z (as before), i.e. Markov Chain but now let T ⊆ R1, (usually

T ⊆ [0,∞)).

Definition 4.1 The stochastic process κ = {Xt : t ∈ T} is called a continuous Markov Chain (CMC) if it

holds:

P (Xtn = in|Xtn−1 = in−1, . . . , Xt1 = i1, Xt0 = i0) = P (Xtn = in|Xtn−1 = in−1),

∀n ≥ 1, ∀i0, i1, . . . , in ∈ E; ∀0 ≤ t0 < t1 < · · · < tn−1 < tn ∈ T.

Denotation: P (Xtn = in|Xtn−1 = in−1) = pin−1in(tn−1, tn) is called the transition (probability) function.

Recall the analogy with pij(n−1, n) in the discrete case: one-step transition probability. However,the notion

of one-step and multi-step transition makes no sense in the continuous case where tn−1, tn ∈ T = [0,∞).

Instead, we are now interested in analytical properties of pin−1in(tn−1, tn), e.g. in limiting and differential

properties (differential equations). In analogy with the discrete case, homogeneity is an essential structural

property.

Definition 4.2 The CMC κ = {Xt : t ∈ T} is said to be homogeneous if it holds:

pij(tn−1, tn) = pij(tn − tn−1), ∀i, j ∈ E,∀0 ≤ tn−1 < tn ∈ T.

This means, for a homogeneous CMC (HCMC for short), the starting and end points are irrelevant, only

the time difference t = tn − tn−1 matters.

Denotation: in the homogeneous case: pij(s, s+ t) = pij(t), ∀i, j,∈ E,∀0 ≤ s, t.
Again, we are collecting all this functions in a matrix P (t) = (pij(t))i,j∈E .

Clearly, for each fixed t ∈ [0,∞), P (t) is a stochastic matrix. In particular, we have:

pij(0) = lim
t↓0

pij(t) = δij ,∀i, j,∈ E i.e. P (0) = (pi,j(0))i,j∈E = Is, s = |E|.

4.2 The Poisson process

This is the most important type of a CMC, with many applications, e.g. in modeling:

- arrivals of emails and information packets,

- customer arrival (and queueing) processes in shops, banks and in tourism (incoming, outgoing),

- faults in materials (cables, textiles, yarns, iron and steel casts, tissues ...),
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- epidemiological/toxicological processes (spread of infection diseases/viruses threatening humans, an-

imals,plants).

Modeling then proceeds on the basis of counting processes.

Definition 4.3 N = {N(t) : t ≥ 0} is called a counting process if it holds:

a) N(t) ≥ 0, ∀t ≥ 0 non-negativity

b) N(t) : Ω→ N, ∀t ≥ 0 integer valued

c) N(t2) ≥ N(t1), ∀0 ≤ t1 < t2 ∈ T monotone non-decreasing.

The most prominent example of a counting process is the Poisson Process defined as follows:

Definition 4.4 The counting process {N(t) : t ≥ 0} is called a Poisson process with intensity λ > 0 if it

holds:

a) N(0) = 0 starting condition,

b) N(t+ s)−N(s) ∼ Po(λt),∀s, t > 0,

c) For all n ≥ 1, and 0 ≤ t0 < t1 < · · · < tn <∞

N(t0)−N(0), N(t1)−N(t0), N(t2)−N(t1), . . . , N(tn)−N(tn−1)

are stochastically independent random variables.

(Property c) is referred to as the property of independent increments).

Briefly, the Poisson process is defined as a counting process with independent Poisson distributed incre-

ments. It is the basis for modeling ”completely” random events such as the sequence of cosmic particles

hitting a given region on the Earth.

We will now give two equivalent characterizations of the Poisson process.

4.2.1 Modeling by means of exponentially distributed interarrival times

Let {Xn}n=1,2,... be a sequence of r.v.s with Xi ∼
i.i.d

Ex(λ), i = 1, 2, . . . and define:

Sn =

n∑
i=1

Xi, S0 = 0, n = 1, 2, . . .

(Think of Sn as the arrival time of the n-th cosmic particle).

Consider the counting process N = {N(t) : t ≥ 0} defined by N(t) = max{n ∈ N : Sn ≤ t}. (In our

example, N(t) counts the numbers of particles which have hitted the region in the interval (0, t]).

Theorem 4.1 The counting process N = {N(t) : t ≥ 0} defined above forms a Poisson process with

intensity λ.

Proof: By definition of N we have

P (N(t) = n) = P (Sn ≤ t, Sn+1 > t) = P (t−Xn+1 < Sn ≤ t) = P (Sn ≤ t)− P (Sn+1 ≤ t)
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observing that Sn+1 = Sn+Xn+1. Since the sum of i.i.d. exponentially distributed r.v.s. follows a Gamma

distribution, Sn ∼ Ga(n, λ), we further obtain

P (N(t) = n) =

t∫
0

 λn

(n− 1)!
xn−1︸ ︷︷ ︸

u′(x)

e−λx︸︷︷︸
v(x)

− λ
n+1

n!
xn︸ ︷︷ ︸

u(x)

e−λx︸︷︷︸
v′(x)

 dx = u(x)v(x)
t

|
0
=
λn

n!
tne−λt =

(λt)n

n!
e−λt

Therefore, N(t) ∼ Po(λt).

It remains to show that N̄(t) = N(t+ s)−N(s) is independent of N(u), ∀u ∈ [0, s] and N̄(t) ∼ Po(λt).

This, however, follows from the well-known property of ”memoryless” - property of the exponential

distribution.

Conversely, it is easy to show that for a Poisson process N = {N(t) : t ≥ 0} with intensity λ, the times

between the jumps of N are i.i.d. distributed as Ex(λ).

Therefore, we have the following characterization:

N = {N(t) : t ≥ 0} is a Poisson process PP(λ) if and only if the interarrival times Xi between the jumps

of N are i.i.d. Ex(λ).

4.2.2 Alternative modeling of Poisson processes

We are now studying an infinitesimal characterization (local behaviour) of the Poisson process:

N(t+ h)−N(t) as h→ 0.

Let N = {N(t) : t ≥ 0} be a counting process with properties:

(1) Independence: The number of events (arrivals) in (t, t+ h) is independent of that in (0, t].

(2) Constant intensity: for any interval (t, t+ h) of length h

P (N(t+ h)−N(t) = 1) = λh+ o(h)

for some λ > 0.

(3) Rareness: Multiple events within short time intervals are improbable, i.e.

P (N(t+ h)−N(t) ≥ 2) = o(h).

Theorem 4.2 The counting process N = {N(t) : t ≥ 0} defined by (1)-(3) forms a Poisson process with

parameter λ.
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Proof: Acording to (1), N has independent increments. Therefore we just need to show that

N(t) ∼ Po(λt). Let pn(t) := P (N(t) = n). Then, by (2) and (3),

pn(t+ h) = (1− λh− o(h))pn(t) + (λh+ o(h))pn−1(t) + o(h)

for all n ≥ 1, and p0(t+ h) = (1− λh− o(h))p0(t). Then it follows

pn(t+ h)− pn(t)

h
= −λh+ o(h)

h
pn(t) +

λh+ o(h)

h
pn−1(t) +

o(h)

h

and
p0(t+ h)− p0(t)

h
= −λh+ o(h)

h
p0(t).

Now, letting h→ 0, we obtain

p′n(t) = −λpn(t) + λpn−1(t) n ≥ 1

p′0(t) = −λp0(t).

This, in turn, implies,

p0(t) = e−λt

p′1(t) = −λp1(t) + λe−λt ↔ p1(t) = (λt)e−λt.

By induction over n we finally obtain:

pn(t) =
(λt)n

n!
e−λt ∀n ≥ 0.

4.2.3 Modifications of the Poisson process

4.2.3.1 Compound Poisson process (CPP(λ))

Let N = {N(t) : t ≥ 0} be a PP(λ) and {Xi}i=1,2,... a family of i.i.d. random variables Xi ∼ X. Then

Y (t) =
N(t)∑
i=1

Xi = X1 + . . .+XN(t) is called a compound PP(λ) (short CPP(λ)).

Y (t) is also called the Poisson sum of the random variable Xi. It has the mean

EY (t) = EN(t){E[Y (t)|N(t)]}

= EN(t){E[X1 + . . .+XN(t)|N(t)]}

= EN(t){N(t) · E(X)}

= [EN(t)] · E(X) = (λt)EX
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and variance

V arY (t) = V arN{E[Y |N(t)]}+ EN(t){V ar[Y |N ]}

= V arN{N(t) · EX}+ EN(t){N(t) · V ar(X)}

= (EX)2 · λt+ λt · V ar(X)

= λt · EX2.

Example: Suppose that, on the average, 25 customers arrive at a grocery shop (per hour). Also, suppose

that a costumer spends an amount of money which is uniformly distributed between 8AC and 20AC. What is

the mean and the standard deviation of the total amount of money spent within 4 hours?

CPP(λ) where λ = 25h−1 and X ∼ U [8, 20], EX = 14, V ar(X) = (20−8)2

12 = 12

⇒ EY (t) = (λt)(EX) = (25 · 4) · 14 = 1400AC

V arY (t) = (λt)(EX2) = 100 · (142 + 12) = 20800AC2

SDY (t) = 144.22AC.

♦

4.2.3.2 Filtered Poisson process FPP(λp)

A Poisson process N = {N(t) : t ≥ 0} with intensity λ where all events are ”filtered” with the same

probability p > 0, independently of each other, is called a filtered Poisson process (FPP). This is a PP with

intensity λp.

Example: On the average, 38 cars
h stop at a highway restaurant. Twenty per cent of the drivers refill their

cars at the neighbouring gas station before continuing to travel. Compute the probability that at least 25

cars come to the gas station, within a period of 3 hours.

λR = 38h−1, λG = 38 · 0.2 = 7.6

P (NG(3) ≥ 25) =

∞∑
k=25

(3λG)k

k!
e−3λG = 1− ppois(24, 3 · 7.6) = 0.3496.
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Additional remarks: In analogy with the PGF (probability generating function) for random variables we

can define the PGF of a counting process {N(t) : t ≥ 0} as follows:

GN(t)(s) = E{sN(t)} =
∞∑
k=0

skP (N(t) = k), |s| ≤ 1.

In particular, the PGF of the Poisson process reads:

GN(t)(s) =

∞∑
k=0

sk
(λt)k

k!
e−λt = e−λt

∞∑
k=0

(λst)k

k!
= e−λteλst = e−λt(1−s).

The PGF of the compound PP(λ) is then defined by:

GY (t)(s) =
∞∑
n=0

(EsX1+...+Xn)P (N(t) = n)

=

∞∑
n=0

(EsX)n
(λt)n

n!
e−λt

= e−λteλtGX(s) = e−λt[1−GX(s)].

4.3 Further properties of the Poisson process PP(λ)

By definition of the Poisson process, the realizations (paths) are integer-valued and monotonically non-

decreasing:

Figure 4.1: Realization (path) Xt of a PP(λ).

Interpretation: κ = {Xt : t ≥ 0} records the number of events (of the same type) occuring in the interval

(0, t], e.g. the number of customers arriving, the number of radioactive decays etc.

From this we immediately infer

P1) P (Xt1 = x1, Xt2 = x2, . . . , Xtn = xn) =
n∏
i=1

[λ(ti−ti−1)]xi−xi−1

(xi−xi−1)! e−λ(ti−ti−1)

for all x0 := 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn, t0 := 0 < t1 < t2 < · · · < tn <∞ and n = 1, 2, . . . .
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Compare this result with the definition of the projective family of the PP(λ) given in Chapter 1!

For n = 1 we have the one-dimensional distribution: P (Xt = x) = (λt)x

x! e−λt, ∀x ∈ N i.e.

Xt ∼ Po(λt) and E(Xt) = V ar(Xt) = λt.

(For normed time periods, t = 1, this yields the well-known characterization EX = V arX = λ of

X ∼ Po(λ)).

P2) The Poisson process has the Markov property, i.e.

P (Xtn = xn|Xtn−1 = xn−1, . . . , Xt1 = x1) = P (Xtn = xn|Xtn−1 = xn−1).

Proof: By definition of the conditional probability the l.h.s. expression reads

P (Xt1 = x1, . . . , Xtn = xn)

P (Xt1 = x1, . . . , Xtn−1 = xn−1)
=

[λ(tn − tn−1)]xn−xn−1

(xn − xn−1)!
e−λ(tn−tn−1) (using P1)

The r.h.s. expression evaluates to

P (Xtn−1 = xn−1, Xtn = xn)

P (Xtn−1 = xn−1)
.

By virtue of the independent increments property we have

P (Xtn−1 = xn−1, Xtn = xn) =
[λ(tn − tn−1)]xn−xn−1

(xn − xn−1)!
e−λ(tn−tn−1) · (λtn−1)xn−1

xn−1!
e−λtn−1︸ ︷︷ ︸

=P (Xtn−1=xn−1)

which leads to the equality of the l.h.s. and r.h.s. expression.

Note: The proof shows that the Markov property follows immediately from the (stronger) assumption

of the independence of increments (Xtn −Xtn−1), (Xtn−1 −Xtn−2), . . . , (Xt2 −Xt1), Xt1 .

P3) The Poisson process is homogeneous, i.e. pij(s, s + t) = P (Xt+s = j|Xs = i) = pij(t),∀s, t ≥ 0.

Proof:

pij(s, s+ t) = P (Xs+t = j|Xs = i) =
P (Xs = i,Xs+t = j)

P (Xs = i)
=

=

(λs)i

i! e−λs (λt)j−i

(j−i)! e
−λt

(λs)i

i! e−λs
=


(λt)j−i

(j−i)! e
−λt for j ≥ i

0 else.

We observe that pij(s, s + t) does not depend on the starting point s ≥ 0, but solely on the time

difference (s+ t)− s = t.

Again, this property is immediately clear from the independent increments property of the PP(λ): the

number of events occuring in (s, s+ t] is independent from the number of events occurring in (0,s].

In particular, for i = 0:p0j(t) = (λt)j

j! e−λt = P (Xt = j). ∀j ∈ E : p0j(t) = P (Xt = j) are the one

dimensional distributions.
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P4) Let ξ denote the (random) pause time (sojourn time, interarrival time) associated with a PP(λ). It is

the time between two jumps of the process. Then it holds ξ ∼ Ex(λ).

Proof: Fξ(t) = P (ξ < t) = 1 − P (ξ ≥ t) = 1 − P (Xt = 0). Thus, Fξ(t) = 1 − (λt)0

0! e−λt, which is

the c.d.f. of Ex(λ).

Note: Eξ =
1

λ︸ ︷︷ ︸
mean sojourn time

and V ar(ξ) = 1
λ2 .

P5) The Poisson process is a pure birth process:

pi,i+k(t) =
(λt)k

k!
e−λt,∀i ∈ E,∀k ≥ 0

pij(t) = 0, for j < i

(See proof of P3).

Letting t = ∆t→ 0, we obtain

pii(∆t) = e−λ∆t = 1− λ∆t+
1

2
(λ∆t)2 − · · · = 1− λ∆t+ o(λ∆t)

pi,i+1(∆t) = (λ∆t)e−λ∆t = λ∆t− (λ∆t)2 +
1

2
(λ∆t)3 − · · · = λ∆t+ o(∆t)

pi,i+k(∆t) =
1

k!
(λ∆t)ke−λ∆t = o(∆t) for k > 1.

The matrix of infinitesimal transition functions thus reads:

P (∆t) = (pij(∆t))i,j∈E =



. . . j = i j = i+ 1 j > i+ 1 . . .
. . .

. . .

1− λ∆t+ o(∆t) λ∆t+ o(∆t) o(∆t)
. . .

. . .

O



4.4 Continuity and differentiability properties of the transition functions pij(t)

Let κ = {Xt : t ≥ 0} be a homogeneous and continuous Markov chain (HCMC).

4.4.1 Chapman-Kolmogorov equation

Let denote p(t) = (P (Xt = j))j∈E the vector of the one-dimensional state probabilities of κ (marginal

distribution of Xt). In particular, p(0) = (P (X0 = j))j∈E =: (pj(0))j∈E is the initial state distribution.
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Theorem 4.3 For any HCMC it holds:

a) P (Xt = j) =
∑
i∈E

pi(0)pij(t), ∀t ≥ 0.

b) pij(s+ t) =
∑
k∈E

pik(s)pkj(t),∀s, t ≥ 0.

Proof:

a) P (X0 = i,Xt = j) = P (Xt = j|X0 = i) · P (X0 = i)

⇒
∑
i∈E

P (X0 = i,Xt = j)︸ ︷︷ ︸
=P (Xt=j)

=
∑
i∈E

pij(t) · pi(0) (marginalization!).

b) This can be proven in analogy with the discrete case (see Section 3.)

In matrix form the theorem reads:

a) p(t)T = p(0)TP (t)

b) P (s+ t) = P (s)P (t)

(Recall the discrete case: p(k)T = p(0)TP (k) and P (n+k) = P (n)P (k) = PnP k.)

Recall: Similar result hold true for inhomogeneous CMC’s, e.g. in generalization of b):

P (s, t) = P (s, u)P (u, t) for all 0 ≤ u < t <∞.

From Theorem 4.3 b) we get the following:

Corollary 4.1 For any fixed pair (i, j) ∈ E × E,the transition function pij(·) is uniformly continuous, i.e.

pij(t± s) −→
s→0

pij(t),∀t > 0.

4.4.2 Differentiability of pij(t)

Theorem 4.4 (Differentiability at t = 0) a) For every i ∈ E the limiting value

lim
t↓0

pii(0)− pii(t)
t

= −p′ii(0) =: qi

exists and it holds: 0 ≤ qi ≤ ∞ (qi <∞ for finite E).

b) For all pairs (i, j) ∈ E × E, i 6= j, lim
t↓0

pij(t)−pij(0)
t = lim

t↓0
pij(t)
t = p′ij(0) =: qij exists and it holds:

0 ≤ qij <∞.

Remarks upon the proof: for brevity, we indicate only the main steps for proving a), the proof of b)

proceeds in a similar way.

1) Using the fact that lim
t↓0

pii(t) = 1 and observing that pii(t) is continuous for all t ≥ 0 it follows:

pii(t) > 0,∀i ∈ E and t > 0.

2) Further, with 0 < pii(t) ≤ 1 for t ≥ 0 we have ϕi(t) := − ln pii(t) ≥ 0 ∧ lim
t↓0

ϕi(t) = 0.
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3) It can be shown that lim
t↓0

ϕi(t)
t = sup

t>0

ϕi(t)
t =

def.
qi where 0 ≤ qi = sup

t>0

ϕi(t)
t ≤ ∞.

4) lim
t↓0

pii(0)−pii(t)
t = lim

t↓0
1−pii(t)

t = lim
t↓0

1− eϕi(t)

ϕi(t)︸ ︷︷ ︸
→1(for t→0+)

·ϕi(t)t = lim
t↓0

ϕi(t)
t = qi observing that

1−exp(−ϕi(t))
ϕi(t)

=
1−(1−ϕi(t)+

ϕi(t)
2

2
−··· )

ϕi(t)
= 1− ϕi(t)

2 + ϕi(t)
2

3! − · · · −→t↓0 1.

4.4.3 Transition intensities

We are now interpreting the infinitesimal quantities qij(j 6= i) and qi:

a) For qij we have qij := p′ij(0) = lim
∆t↓0

pij(∆t)
∆t < ∞ and thus pij(∆t) = qij∆t + o(∆t), i.e., apart from

remainder terms o(∆t), the probability of transition from i to j within the infinitesimal period ∆t is

given by qij∆t. Therefore, qij is called the transition intensity from i to j 6= i.

b) For i ∈ E with qi := −p′ii(0) < ∞ it follows from Theorem 4.4 a) that 1−pii(∆t)
∆t −→

∆t→0+
−p′ii(0) = qi

and thus 1− pii(∆t)︸ ︷︷ ︸
P (Xt+∆t∈E\{i}|Xt=i)

= qi∆t+ o(∆t) as ∆t ↓ 0. Therefore, qi is called the transition intensity

out of state i, conversely, pii(∆t) = 1− qi∆t+ o(∆t) represents the probability of staying in the state

i ∈ E for at least a further period of the length ∆t.

As an example, we look at the transition intensities of the Poisson process.

Example: PP(λ) , E = {0, 1, 2, . . .}. From E5, Section 4.3, we recall:

pij(∆t) =



λ∆t+ o(∆t) , for j = i+ 1

1− λ∆t+ o(∆t) , for j = i

o(∆t) , for j ≥ i+ 2

0 , for j < i

Therefore, qi = λ for all i ∈ E, qi,i+1 = λ for all i ∈ E, qij = 0 for all j < i or j ≥ i+ 2. ♦

Corollary 4.2 (Relationship between qij and qi)∑
j 6=i

qij ≤ qi for all i ∈ E

with equality holding in case that E is finite.
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Proof:
∑
j 6=i

pij(∆t) = 1− pii(∆t). Clearly, then, for all n <∞,

n∑
j=1,j 6=i

pij(∆t) ≤ 1− pii(∆t)

(=) if |E| = n

⇒
n∑

j=1,j 6=i

pij(∆t)

∆t
≤ 1− pii(∆t)

∆t

and letting ∆t→ 0:
n∑

j=1,j 6=i
qij ≤ qi.

Definition 4.5 A homogeneous CMC is said to be conservative if it holds
∑
j 6=i

qij = qi <∞ for all i ∈ E.

Corollary 4.3 Each homogeneous CMC with finite state space E is conservative.

4.4.4 Infinitesimal matrix

Denotation: qii := p′ii(0) = −qi, i ∈ E.

Definition 4.6 The matrix of transition intensities Q = (qij)i,j∈E = (p′ij(0))i,j∈E is called the

infinitesimal matrix or generator, respectively.

In matrix form: Q = P ′(0) = d
dtP (t)|t=0.

The generator Q has the following properties:

i) qij ≥ 0 for j 6= i, i ∈ E

ii) qii ≤ 0 for all i ∈ E

iii)
∑
j 6=i

qij ≤ qi, i.e.
∑
j∈E

qij ≤ 0 for all i ∈ E (
∑
j∈E

qij = 0 for conservative CMC).

Remark: Clearly, Q is not a stochastic matrix, neither is Q+ I, although for a conservative CMC the rows

of Q + I sum up to one, the main diagonal elements qii + 1 = 1 − qi are not necessarily non-negative.

Example: Generator (matrix) of PP(λ)

Q =


−λ λ

−λ λ O
. . .

. . .

O


band matrix (pure birth process) with

∑
j∈E

qij = qii + qi,i+1 = −λ + λ = 0. Thus, any PP(λ) is a

conservative CMC.
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4.4.5 Random sojourn time in a given state

Let i ∈ E be such that 0 < qi < ∞ and pi(0) = P (X0 = i) = 1. Denote by ξi the random sojourn time

in state i ∈ E.

Theorem 4.5

P (ξi > t|X0 = i) := P (Xs = i, 0 < s ≤ t|X0 = i) = e−qit

for all t > 0, i.e. ξi ∼ Ex(qi) for any hCMC.

Proof:

P (Xs = i, 0 < s ≤ t|X0 = i) = lim
n→∞

P (X0 = i,X t
n

= i,X 2t
n

= i, · · · , Xnt
n

= i). (?)

Now, for any integer n ∈ N we have

P (X0 = i,X t
n

= i,X 2t
n

= i, · · · , Xnt
n

= i) = pi(0) · pii
(
t

n

)
· . . . · pii

(
t

n

)
=

[
pii(

t

n
)

]n
=

[
1− t

n
qi + o

t

n

]n
−→
n→∞

e−qit.

Remark: (?) actually requires that the CMC {Xt : t ≥ 0} is separable, i.e. {Xs : s ∈ (0, t]} is already

determined (with probability one) by {Xs : s ∈ S} with S = {0, tn ,
2t
n , . . . ,

nt
n }, for all n ∈ N.

Thus, Theorem 4.5 tells us that

Fξi(t) = 1− e−qit, E(ξi) =
1

qi
, i ∈ E.

Particularly, for a Poisson process PP(λ) we have:

ξi ∼
i.i.d

Ex(λ) ∀i ∈ E.

Note: For a general hCMC, the ξi are not necessarily i.i.d. .

On the basis of the mean sojourn time E(ξi) = 1
qi

we distinguish three basic categories of states as follows.

Definition 4.7 The state i ∈ E of the CMC {Xt : t > 0} is called stable (instantaneous) if and only if

0 ≤ qi <∞(qi =∞). In particular, the state i ∈ E is said to be absorbing iff qi = 0.

Interpretation:

(i) If i ∈ E is an absorbing state (qi = 0), then it holds:

P (Xs = i, 0 < s ≤ t|X0 = i) = 1,∀t > 0,

and E(ξi) = 1
qi

=∞, i.e. the process remains in state i forever.
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(ii) If i ∈ E is instantaneous (qi =∞), then it holds:

P (Xs = i, 0 < s ≤ t|X0 = i) = 0,∀t > 0,

and E(ξi) = 1
qi

= 0, i.e. having reached i ∈ E, the process leaves the state i ∈ E instantaneously.

(iii) For a stable state i ∈ E with 0 < qi <∞ it holds:

0 < P (Xs = i, 0 < s ≤ t|X0 = i) < 1.

Remark: For a conservative homogeneous CMC all states are stable.

4.4.6 First transition probabilities

Let κ = {Xt : t ≥ 0} be a conservative hCMC, i.e. any state i ∈ E is stable. Further, assume

P (X0 = i) = 1 for some i ∈ E. What is the probability of transition from state i ∈ E to state j ∈ E
after the end of the sojourn time ξi?

Define (first transition times):

• τi := sup
Xt=i

t (time of first transition of Xt from i to some k ∈ E\{i}) and

• τij := inf
Xt=j

t (time of first transition from i ∈ E to j ∈ E).

Definition 4.8 First transition probabilities:

rij := P (τij = τi|X0 = i) ; i 6= j ∈ E.

Theorem 4.6 Let κ = {Xt : t ≥ 0} be a conservative hCMC. Then it holds:

rij =
qij
qi

; j 6= i

for all non-absorbing states i ∈ E.

Proof: Obviously,

rij = lim
∆t→0+

P (X∆t = j|X0 = i,X∆t 6= i)

= lim
∆t→0+

pij(∆t)

1− pii(∆t)
= lim

∆t→0+

pij(∆t)
∆t

1−pii(∆t)
∆t

=
p
′
ij(0)

−p′ii(0)
=
qij
qi
.
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4 Continuous Markov Chains (CMC) 4.5 Embedded Markov Chain, State Classification

Illustration:

Figure 4.2: Path of a conservative hCMC.

Note: The distribution function of the random sojourn time ξi in state i ∈ E only depends on i (via qi),

it does not depend on the state j ∈ E of the next transition. In contrast with this situation, for a Semi

- Markov process, Fξi also depends on the state j of the next transition and, moreover, the cdf is not

necessarily an exponential distribution.

Remark: The sojourn time ξi is characterized by the ”memoryless” - property of the exponential distribu-

tion, i.e.

P (ξi > t+ t0|ξi > t0) =
P (ξi > t+ t0)

P (ξi > t0)
=
e−qi(t+t0)

e−qit0
= e−qit

for all t0, t > 0, i.e. ξi does not depend on the actual ”age” t0 > 0.

4.5 Embedded Markov Chain, State Classification

Let κ = {Xt : t ≥ 0} be a hCMC.

Denote: T0 = 0, T1, T2, . . . - (random) times at which the i - th jump of κ occurs.

Definition 4.9 y = {Yk : k ≥ 0} is called the embedded Markov chain (EMC) associated with κ.
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For one - step transition probability of EMC y holds:

Py =
(
p

(y)
ij

)
=


p

(y)
ii =

0 if qi > 0

1 if qi = 0

p
(y)
ij =

rij =
qij
qi

if i 6= j ∧ qi > 0

0 if i 6= j ∧ qi = 0.

State classification is then based on Py (essential, non - essential, transient, recurrent,...)

Definition 4.10 The state i ∈ E is said to be positive recurrent (null-recurrent) in κ iff

µi = E (τii|X0 = i) <∞(=∞).

Theorem 4.7 (Limit theorem for hCMC) If κ is an irreducible hCMC then it holds:

lim
t→∞

pji(t) =
1

qiµi
, ∀i, j ∈ E.

4.6 Kolmogorov’s Differential Equation System

The following differential equation system allows us to determine the transition functions pij(t) in analytical

form.

Theorem 4.8 (Kolmogorov’s forward differential equation system, fKDE system) Assume that

qi <∞ for all i ∈ E. Then it holds:

p
′
ij(t) =

∑
k∈E

qikpkj(t) ∀t ≥ 0

pij(0) = δij , ∀i, j ∈ E (initial conditions).

In matrix form we have:

P
′
(t) = QP (t); P (t) = (pij(t))i,j∈E , Q = (qij)i,j∈E

P (0) = Is; s = |E|.

Proof: Starting from the Chapman - Kolmogorov equation system

P (s+ t) = P (s) · P (t) , s, t ≥ 0

and setting s = ∆t, we obtain

P (∆t+ t) = P (∆t) · P (t) /− P (t)
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Thus,

P (t+ ∆t)− P (t) = [P (∆t)− Is]P (t)

⇒ P (t+ ∆t)− P (t)

∆t
=

[
P (∆t)− Is

∆t

]
P (t) .

Now, letting ∆t→ 0+, we arrive at

lim
∆t→0+

P (t+ ∆t)− P (t)

∆t
= lim

∆t→0+

[
P (∆t)− P (0)

∆t

]
P (t)

⇔ P
′
(t) = QP (t)

observing that P (0) = (pij(0)) = Is and P
′
(0) = Q.

Remark: The above equations form a system of s2 homogeneous ordinary linear differential equations of

first order with constant coefficients (such a system is called a d’Alambert system). The above differential

equations are also referred to as ”differential” form of the Chapman - Kolmogorov equations.

The converse of Theorem 4.8 also holds true, i.e. if the transition functions pij(·) of a homogeneous CMC

satisfy the KDE system then the hCMC is conservative. Thus, in particular, for a homogeneous CMC with

finite state space E(s <∞) the KDE system is automatically satisfied.

Interchanging the roles of s and t in the above proof we can analogously arrive at Kolmogorov’s backward

differential equation system (bKDE system for short):

P
′
(t) = P (t) ·Q; P (0) = Is

⇔ p
′
ij(t) =

∑
k∈E

pik(t)qkj ; ∀i, j ∈ E

pij(0) = δij .

Solution in case of finite E : |E| = s <∞

P (t) = eQt :=
∞∑
k=0

Qk
tk

k!︸ ︷︷ ︸
(matrix exponential)

= Is +Qt+Q2 t
2

2
+ · · ·

forms a solution of the fKDE system since

d

dt
P (t) =

∞∑
k=1

Qk
tk−1

(k − 1)!
= Q

∞∑
k=0

Qk
tk

k!
= QeQt = Q · P (t).

Example 4.1 Let s = |E| = 2 and

Q =

(
−a +a

b −b

)
for some a > 0, b > 0.
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4 Continuous Markov Chains (CMC) 4.7 Steady - state distribution

It is easily seen that

Q2 =

(
a2 + ab ab− a2

−b2 − ab b2 + ab

)
= − (a+ b)Q

and, by induction,

Qn = [− (a+ b)]n−1Q; n ≥ 1.

Thus, we obtain

P (t) = eQt = I2 +
∞∑
k=1

Qk
tk

k!

= I2 −
Q

a+ b

∞∑
k=1

[− (a+ b)]k
tk

k!

= I2 −
Q

a+ b

(
e−(a+b)t − 1

)
.

Moreover,

lim
t→∞

P (t) = I2 +
Q

a+ b
=

1

a+ b
[(a+ b)I2 +Q]

=
1

a+ b

(
b a

b a

)
.

♦

4.7 Steady - state distribution

We now investigate the long - term behaviour of p(t) = (P (Xt = i))i∈E as t→∞.

Formally, if the limiting distribution exists, then we call

p∞ := lim
t→∞

p(t)

the steady - state (or: ergodic) distribution of the associated hCMC.

Heuristics: If p∞ exists then, clearly,

p(t+ ∆t) = p(t)

for sufficiently large t > t0. Recalling the Chapman - Kolmogorov equations,

p(t+ ∆t)T = p(t)TP (∆t)

54
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we then have for t > t0 and ∆t > 0:

p(t)T = p(t)TP (∆t)

←→ p(t)T
[
P (∆t)− I

∆t

]
= 0T

←→
∆t→0

p(t)T · P ′(0) = 0T

←→
P ′ (0)=Q

QT p(t) = 0.

Definition 4.11 Let κ = {Xt : t ∈ T} be a hCMC with generator matrix Q.Then p∞ := (p0, p1, . . .)
T is

called the steady - state distribution (ergodic distribution) of κ if it holds

QT p∞ = 0, p∞ ≥ 0, 1T p∞ = 1.

Theorem 4.9 Let κ = {Xt : t ∈ T} be a positive recurrent and irreducible hCMC with transition matrix

P (t) = (pij(t))i,j∈E and generator Q = (qij). Then there exists a unique steady - state distribution

p∞ = (pi)i∈E and it holds

lim
t→∞

pji(t) = pi =
1

qiµi
∀i, j ∈ E.

For a proof see [5].

Comparing this result with the limit result stated in Theorem 4.7, we note that the additional assumption

of positive recurrence leads to a simple alternative for computing the mean recurrence times:

µi =
1

piqi
; i ∈ E.

Further, note that in case that κ is finite the additional assumption of positive recurrence is not needed.

Example 4.1 cont’d: For the hCMC κ with E = {1, 2} and

Q =

(
−a +a

b −b

)
; a > 0, b > 0;

considered in Section 4.6 we have

P (y) =

(
0 q12

q1
q21

q2
0

)
=

(
0 1

1 0

)
.

Therefore, κ is irreducible. Moreover, it is positive recurrent, since E is finite. This implies the following

unique steady - state distribution:

p∞ =

(
p1

p2

)
= lim

t→∞

(
P (Xt = 1)

P (Xt = 2)

)
:
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QT p∞ =

(
0

0

)
p1, p2 ≥ 0, p1 + p2 = 1

 ←→
−ap1 + bp2 = 0

p1 + p2 = 1

←→ p1 =
b

a+ b
, p2 =

a

a+ b
.

Finally, the mean recurrence times read:

µ1 =
1

q1p1
=
a+ b

ab
=

1

q2p2
= µ2.

To conclude this section, let us look at a simple but real - life application.

Example 4.2 Consider a reserve system with two identical machines. Ideally, one machine is working while

the other one is held in reserve. When a failure occurs, i.e. the machine stops working, it is going to be

repaired and the other machine begins to work immediately. Assume that both the lifetime L and the

repair time R of the machines follow an exponential distribution:

L(t) = 1− e−λt; t > 0, λ > 0

R(t) = 1− e−µt; t > 0, µ > 0.

Define Xt = number of machines which may be used at time t > 0, and denote

E =


0, 1, 2

no machine working 1 machine working 1 machine working

(both in repair) (other one in repair) (second one in reserve)

 .

Determine the steady - state probabilities pi = P (X∞ = i); i = 0, 1, 2; and the (overall) reliability of the

system.

First, we have to determine the transition matrix:

P (∆t) =

 p00(∆t) p01(∆t) p02(∆t)

p10(∆t) p11(∆t) p12(∆t)

p20(∆t) p21(∆t) p22(∆t)


where

p00(∆t) = e−µ∆te−µ∆t = e−2µ∆t = 1− 2µ∆t+ o(∆t)

p02(∆t) =
(
1− e−µ∆t

) (
1− e−µ∆t

)
= o(∆t)

p10(∆t) =
(

1− e−λ∆t
)
e−µ∆t = λ∆t+ o(∆t)

p12(∆t) =
(
1− e−µ∆t

)
e−λ∆t = µ∆t+ o(∆t)

p20(∆t) =
(

1− e−λ∆t
)(

1− e−λ∆t
)

= o(∆t)

p21(∆t) =
(

1− e−λ∆t
)
e−λ∆t = λ∆t+ o(∆t).
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Thus,

P (∆t) =

 1− 2µ∆t+ o(∆t) 2µ∆t+ o(∆t) o(∆t)

λ∆t+ o(∆t) 1− (λ+ µ)∆t+ o(∆t) µ∆t+ o(∆t)

o(∆t) λ∆t+ o(∆t) 1− λ∆t+ o(∆t)


which implies

Q = P
′
(0) =

 −2µ −2µ 0

λ −(λ+ µ) µ

0 λ −λ

 .

Finally, the steady - state equations QT p∞ = 03 with p∞ = (p0, p1, p2)T read:

−2µp0 + λp1 = 0

−2µp0 − (λ+ µ)p1 + λp2 = 0

µp1 − λp2 = 0,

leading to p1 = λ
µp2 = 2µ

λ p0. Using

1 = p0 + p1 + p2 = p0

(
1 +

2µ

λ
+

2µ2

λ2

)
we therefore obtain

p0 =
λ2

(λ+ µ)2 + µ2
, p1 =

2λµ

(λ+ µ)2 + µ2
, p2 =

2µ2

(λ+ µ)2 + µ2
.

The reliability of the system is

p = p1 + p2 =
2λµ+ 2µ2

λ2 + 2λµ+ 2µ2
=

q + q2

1
2 + q + q2

where

q =
1
λ
1
µ

=
mean lifetime

mean repairtime
.

The following table gives numerical values for the reliability for some chosen values of q:

q 0.5 1 2 4 10

p 0.6 0.8 0.923 0.976 0.995
.
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5 Basics of continuous stochastic processes

5 Basics of continuous stochastic processes

5.1 Basic concepts

Let κ = {Xt = X(, ) : t ∈ T}, where T ⊆ R1(R+) is a continuous index set, and the state space E is also

continuous, i.e. Xt = Ω→ E, be a stochastic process.

In this chapter, we assume:

E ⊆ R1, (continuous state space)

T ⊆ [0,∞), (continuous index set).

Typical applications are:

- Banks-insurance companies (market and interest rates, premium)

- Medicine (monitoring of brain-, hart-, organ activities)

- Meteorology

- Electrical engineering (measure of current intensity, voltage)

Definition 5.1 (Continuous Markov process (CMP)) κ = {Xt : t ∈ T} is said to be a Markov process

(Markovian) if it holds:

P (Xt ∈M |Xtn = xn, Xtn−1 = xn−1, . . . , Xt1 = x1) = P (Xt ∈M |Xtn = xn)

∀M ∈ L1(Borel σ algebra in R1), ∀n ∈ N, ∀t1 < t2 < · · · < tn < t ∈ T, ∀xi ∈ R1.

Recall: κ is uniquely determined by the set of all n-dimensional distributions

Ft1,...,tn(x1, x2, . . . , xn) = P (Xt1 ≤ x1, Xt2 ≤ x2, . . . , Xtn ≤ xn)

provided that the family of distributions is projective (Definition 1.3).

For n = 1 we get Ft(x) = P (X(t) ≤ x) the univariate (marginal) distribution of Xt.

Definition 5.2 Let κ = {Xt : t ∈ T} be a continuous stochastic process. Then:

mX(t) := EX(t) ∀t ∈ T = [0,∞)

is called a trend function (mean or expectation function), if EX(t) exists.

The trend function describes the average development of a stochastic process in time. If the densities

ft(x) = dFt(x)
dx ,∀t ∈ T exist, then it holds mX(t) =

+∞∫
−∞

xft(x)dx.
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Definition 5.3 Let κ = {Xt : t ∈ T} be a continuous stochastic process. Then:

KX(s, t) := Cov(X(s), X(t)) ∀s, t ∈ T

is called the covariance function and

ρX(s, t) :=
Cov(X(s), X(t))√
V ar(Xs)

√
V ar(Xt)

is called the correlation function.

Remark: The covariance (correlation) function of a stochastic process is also called autocovariance (au-

tocorrelation) function respectively.

By the definition of the covariance the following holds:

KX(s, t) = E{[X(s)−mX(s)][X(t)−mX(t)]} = E{[X(s)X(t)]} −mX(s)mX(t).

In particular KX(t, t) = E{[X(t) − mX(t)]2} = V ar{X(t)} is called the variance function. So we can

write the correlation function as ρX(s, t) := KX(s,t)√
KX(s,s)KX(t,t)

.

Example: Let X(t) = A cos(ωt+ Φ) be a oscillator of cosine waves whit a random amplitude and random

phase where

- A : nonnegative random variable with finite expectation and variance,

- Φ : uniformly distributed random variable in [0, 2π].

A and Φ are stochastically independent. The trend function is:

mX(t) = E(A)E{cos(ωt+ Φ)} = E(A)
1

2π

2π∫
0

cos(ωt+ ϕ)dϕ = E(A)
1

2π
[sin(ωt+ ϕ)]2π0 = E(A) · 0 ≡ 0.

The covariance function is:

K(s, t) = E{[A cos(ωs+ Φ)][A cos(ωt+ Φ)]} = E(A2)
1

2π

2π∫
0

cos(ωs+ ϕ) cos(ωt+ ϕ)dϕ

= E(A2)
1

2π

2π∫
0

1

2
{cos[ω(t− s)] cos[ω(s+ t) + 2ϕ]}dϕ =

1

2
E(A2) cos(ω(t− s)).

♦
Often, instead of considering κ = {Xt : t ∈ T}, we consider the increments X(t2) − X(t1) of κ in the

interval [t1, t2], t1, t2 ∈ T, t1 < t2.

For practical purposes, we often assume independence of increments in disjoint intervals (for example

finance statistics).
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Definition 5.4 κ = {Xt : t ∈ T} is said to be a continuous stochastic process with

independent increments, if for all n-tuples (t1, t2, . . . , tn) where t1 < t2 < . . . < tn, the increments

X(t2)−X(t1), X(t3)−X(t2), . . . , X(tn)−X(tn−1)

are stochastically independent.

An important subclass of this type are Lévy processes.

5.2 Wiener process (Brownian motion)

In 1828, R. Brown, a Scottish botanist, summarized his observations on erratic movements of pollen

particles in liquids. The physical explanation was given by A. Einstein in 1905 (molecular ”‘bombardment”’

due to water molecules). The first mathematical approach was to model the Paris stock exchange by L.

Bachelier (1900). Mathematical foundation was given by N. Wiener (1923).

5.2.1 Definition

Definition 5.5 A stochastic process κ = {Xt : t ∈ T} = {Wt}t≥0 with continuous paths (trajectories) is

said to be a Wiener process (Brownian motion), if it holds:

i) All increments Wt −Ws and Wv −Wu are pairwise stochastically independent where

0 ≤ s < t ≤ u < v <∞ ∈ T .

ii) The increments Wt −Ws are normally distributed with parameter σ2 > 0, i.e.

Wt −Ws ∼ N(0, σ2(t− s)), ∀0 ≤ s < t.

iii) P (W0 = 0) = 1 is the initial condition.

Briefly: A Wiener process (Brownian motion) is a stochastic process with independent normally distributed

increments.

Remark: For σ2 = 1 we call {Wt}t≥0 a standard Wiener process. A non standard wiener process {Wt}t≥0

can be standardized by taking W̃t = Wt
σ .

5.2.2 Properties of the Wiener process

W1) Covariance function

Theorem 5.1 The covariance function of the Wiener process {Wt}t≥0 is

KW (s, t) = σ2 min(s, t).
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Proof: Let 0 ≤ s < t :

KW (s, t) = Cov(W (s),W (t))

= E{W (s)W (t)} −mW (s)︸ ︷︷ ︸
0

mW (t)︸ ︷︷ ︸
0

= E{W (s)[W (t)−W (s) +W (s)]}

= E{W (s)[W (t)−W (s)]}+ E{W (s)2}

[independent increments] = E{W (s)︸ ︷︷ ︸
0

}E{W (t)−W (s)}+ V ar{W (s)}

= σ2s.

Analogous: 0 ≤ t < s : Cov(W (s),W (t)) = σ2t.

Corollary 5.1 The variance function of the Wiener process is

KW (t, t) = V ar{W (t)} = σ2t

and the correlation function is:

ρW (s, t) =
σ2 min(s, t)√
σ2s
√
σ2t

=

√
s

t

for 0 ≤ s < t.

W2) Homogeneity: Wt+h −Ws+h ∼ N(0, σ2(t − s)), ∀h > 0, i.e. the distribution of increments does

not depend on the position of the time interval [s, t], it just depends on the interval length t− s.

W3) Non-differentiability

Theorem 5.2 The paths (trajectories) of the Wiener process are, with probability 1, nowhere differentiable.

Proof: Consider the difference quotient
Wt+h−Wt

h ∼ N(0, 1
h) where, w.l.o.g., we have set σ2 = 1.

Let I = (a, b] with −∞ < a < b < +∞ be an arbitrary interval.

P

(
Wt+h −Wt

h
∈ I
)

=

b∫
a

√
h√
2π
e−

hx2

2 dx =
[
√
hx=t]

√
hb∫

√
ha

1√
2π
e−

t2

2 dt −→
h→0

0

thus, the differential of a trajectory is, with probability 0, contained in a finite interval.

W4) Finite dimensional distribution of the Wiener process: Using the independence of the increments,
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we can easily compute the following n dimensional probability distribution:

W =


Wt1 −Wt0

Wt2 −Wt1
...

Wtn −Wtn−1

 ∼ N(0, σ2D) where D =


t1 − t0

t2 − t1 O
. . .

O tn − tn−1

 .

W5) Markov property: The Wiener process is a Markov process, since we have independence of incre-

ments.

Theorem 5.3 For all n ≥ 2 and n tuples (t1, t2, . . . , tn), (x1, x2, . . . , xn) it holds:

P (W (tn) ≤ xn|W (tn−1) ≤ xn−1, . . . ,W (t1) ≤ x1) = P (W (tn) ≤ xn|W (tn−1) ≤ xn−1).

Proof: P (W (tn) ≤ xn|W (tn−1) ≤ xn−1, . . . ,W (t1) ≤ x1) =

n∏
i=1

P (W (ti)−W (ti−1)≤xi−xi−1)

n−1∏
i=1

P (W (ti)−W (ti−1)≤xi−xi−1)

=

P (W (tn)−W (tn−1) ≤ xn − xn−1) = P (W (tn) ≤ xn|W (tn−1) ≤ xn−1).

A stochastic process with independent increments is a Markov process, the converse does not have

to be true.

5.2.3 Transition probability densities

Now we look at the probability transition function:

P (W (t) ≤ y|W (s) = x) = P (W (t)−W (s)︸ ︷︷ ︸
∼N(0,σ2(t−s))

≤ y − x) = Φ

(
y − x√
σ2(t− s)

)
for 0 ≤ s < t. (♦)

Definition 5.6 The function px,y(s, t) = ∂
∂yP (W (t) ≤ y|W (s) = x) = ∂

∂yΦ

(
y−x√
σ2(t−s)

)
is called the

probability (density) transition function of the Wiener process.

Given (♦) the following holds: the probability (density) transition function of the Wiener process is:

px,y(s, t) =
1√

2πσ2(t− s)
exp

(
−1

2

(y − x)2

σ2(t− s)

)
∀0 ≤ s < t,∀y, x ∈ R1.
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This function satisfies the following equations:

∂p

∂t
=

1

2
σ2 ∂

2p

∂y2
(Fokker-Planck equation)

∂p

∂s
= −1

2
σ2 ∂

2p

∂x2
(Backward equation)

px,y(s, t) =

+∞∫
−∞

px,z(s, u)pz,y(u, t)dz for arbitrary s < u < t. (Chapman-Kolmogorov equation)

5.2.4 First passage time

Consider the event W (t) > m,m > 0, t is fixed. We now look at the threshold exceedances of m. Since

W (0) = 0 and W (s) is continuous in 0 ≤ s ≤ t, W (s) = m for at least one s ∈ [0, t].

Definition 5.7 The first passage time of the threshold m > 0 is Tm = inf{s > 0 : W (s) = m}.

The reflection path of W (s) is:

R(s) =

W (s) , for s < Tm

2m−W (s) , for s ≥ Tm.

Reflection principle: Both W (·) and R(·) are equally probable, i.e. P (Tm ≤ t,W (s) > m) = P (Tm ≤
t,W (s) < m).

Figure 5.1: First passage time and reflection path.

Theorem 5.4 For the first passage time it holds: FTm(t) = 2
(

1− Φ
(

m
σ
√
t

))
,∀t ≥ 0, the inverse Gaussian

distribution with parameters m and σ. The density function is:

fTm(t) =
∂

∂t
FTm(t) =

1√
2πt3

m

σ
exp

(
− m2

2σ2t

)
,∀t ≥ 0.
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5.2.5 Maximum of the Wiener process

Let Mt = sup{W (s) : 0 ≤ s ≤ t} be the maximum of the Wiener process in [0, t].

Theorem 5.5 The maximum Mt has the following probability density function:

fMt =

√
2

πtσ2
exp

(
− m2

2tσ2

)
, 0 ≤ m <∞,Mt ∼ Ntrunc(0, σ

2t).

Proof: For arbitrary m > 0 it holds Mt ∼ N[0,∞)(0, σ
2t), thus Mt ≥ m⇔ Tm ≤ t. We get:

P (Mt ≥ m) = P (Tm ≤ t) = 2P (W (t) > m) =

∞∫
m

√
2

πtσ2
exp

(
− x2

2tσ2

)
dx.

Differentiation by m yields the density:

fMt =

√
2

πtσ2
exp

(
− m2

2tσ2

)
,m ≥ 0.

Consequence: Mt ∼ N[0,∞)(0, σ
2t).

Remark: Truncated normal distribution X ∼ N(µ, σ2) ⇒ P (X ≤ x|X ∈ [a, b]). N[a,b](µ, σ
2) has the

following density function:

f(x|µ, σ, a, b) =
1
σϕ
(x−µ

σ

)
Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

) .
Specially for µ = 0, a = 0, b =∞ we have:

f(x|0, σ, 0,∞) =

1
σ

1√
2πσ

exp
(
− x2

2σ2

)
1− 1

2

=

√
2

πσ2
exp

(
− x2

2σ2

)
.

Remark: Simulation of the Wiener process. The Gaussian random walk: ∆t > 0 sufficiently small,

tn = n∆t;n = 1, 2, . . .. Generate Xi ∼
i.i.d.

N(0, σ2), i = 1, 2, . . .. It holds
n∑
i=1

Xi ∼ N(0, nσ2). It follows

Wtn =
√

∆t

n∑
i=1

Xi ∼ N(0, n∆tσ2) = N(0, σ2tn)

Wti −Wti−1 ∼ N(0, σ2(ti − ti−1) = N(0, σ2∆t).

R code:

> set.seed(139)

> N= 1000; T= 10; delta= T/N

> W=c(O, cumsum(sqrt(delta)*rnorm(N)))

> t= seq(O, T, by= delta)

> plot(t,W, type="l", main="Simulated Standard Wiener Process")
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W

Figure 5.2: Output in R.

5.3 Generalization of the Wiener process

5.3.1 Wiener process with linear drift

Definition 5.8 X(t) is called a Wiener process with linear drift if

X(t) = µt+W (t),W (t)−Wiener process

where µ ∈ R1 is called the drift parameter.
Corollary 5.2

mX(t) = EX(t) = µt.

Interpretation: We get X(t) by overlaying the Wiener process with linear increasing (decreasing) terms.

From the definition of W (t) we get:

a) X(t) has independent, homogeneous increments.

b) For every increment, the following holds:

X(t)−X(s) = µ(t− s) +Wt−s ∼ N(µ(t− s), σ2(t− s)) for 0 ≤ s < t.

c) The first passage time Tm for the threshold m, of the Wiener process with drift parameter µ, is

fTm(t) =
|m|√

2πσ2t3
exp

(
−(|m| − |µ|t)2

2σ2t

)
, 0 ≤ t <∞
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the density function of the generalized inverse Gaussian distribution with parameters m,µ and σ2. It

holds:

E(Tm) =
m

µ
, V ar(Tm) =

|m|σ2

|µ|3
.

Thus, for µ = 0 (Wiener process without drift) the mathematical expectation and variance doesn’t

exist.

5.3.2 Geometric Wiener process with drift

Definition 5.9 Let X(t) be a Wiener process with drift. We call Z(t) = eX(t) the geometric Wiener

process with drift.

Application: In Finance statistics, the process is used to model share prices (interest rates) over time

Z(t) = z0e
Xt, where Z(0) = z0 is the stock price.

Example [American call-option]: An investor acquires at t = 0 the right to buy the option, in any

subsequent time period t > 0 for z0 Euro, independent of the market value. Most interesting are the

threshold exceedances z > z0, and the gain z − z0 : Z(t) ≥ z ⇔ X(t) ≥ ln
(
z
z0

)
=: m.

Conversely: If Z(t) is a geometric Wiener process with drift, then X(t) = ln[Z(t)] is a Wiener process.

5.3.3 Brownian bridge

Consider the conditional stochastic process Bt := (Wt|W1 = 0), t ∈ [0, 1]. This process is known as the

Brownian bridge, with the following properties:

- EBt = 0,

- V ar(Bt) = t(1− t),

- Cov(Bs, Bt) = s(1− t) for 0 ≤ s < t ≤ 1.

Remark: the increments in the stochastic process {Bt : t ∈ [0, 1]} are not independent.

Definition 5.10 (Alternative) If Wt, t ≥ 0 is a standard Wiener process, then {Bt : t ∈ [0, 1]} is a

Brownian bridge when Bt = Wt −W (1) for t ∈ [0, 1].

Remark: The Brownian bridge can be represented as the series:

Bt =
∞∑
k=1

Xk

√
2 sin (kπt)

kπ
where Xk ∼

i.i.d
N(0, 1)

known as the Karhunen–Loève decomposition.
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5.4 Stochastic integral

Definition 5.11 A Markov process κ = {Xt}t∈T is called a diffusion process if it holds:

i)

P (|Xt+h −Xt| ≤ ε|Xt) = 1− o(h),∀ε > 0

where lim
h→0+

o(h)
h = 0, i.e. big changes in a small amount of time are improbable.

ii) E{Xt+h−Xt} = µ(t,Xt)h+ o(h), i.e. the local expectation of the (course) increment is proportional

to the length of the time interval [t, t+ h]. µ(t,Xt) is called the proportion factor, which depends on

the time t and the current value of Xt, but doesn’t dependent on the previous courses.

iii) V ar{Xt+h − Xt} = σ(t,Xt)
2h + o(h), i.e. the local variance of the (course) increment is also

proportional to the length of the time interval [t, t+h] and also depends on the time t and the current

value of Xt, but not on the previous courses.

Remarks to Definition 5.11:

a) The factor µ(t, x) in definition 5.11 ii) is called drift of the stochastic process κ.

b) The factor σ(t, x) in definition 5.11 iii) is called the stochastic fluctuation (volatility) of the stochastic

process κ.

Now, considering the probability (density) transition function

px,y(s, t) =
∂

∂y
P (Xt ≤ y|Xs = x),∀t ≥ s.

Under some regularity assumptions, we could uniquely determine the functions by µ(t, x) and σ(t, x).

Regularity assumptions:

R1) The factors µ(t, x) and σ(t, x) are measurable and real valued.

R2) Lipschitz condition:

∃K1 : |µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K1(n)|x− y|, ∀t ≥ 0,∀x, y : |x| ≤ n, |y| ≤ n.

R3) The growth bound:

∃K2 : |µ(t, x)|2 + |σ(t, x)|2 ≤ K2(1 + x2),∀t ≥ 0, ∀x ∈ R1.
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Simple approach: Let µ(·, ·) and σ(·, ·) be µ(t,Xt) = µXt, σ(t,Xt) = σ|Xt|. We get the following for

this special case:

E[Xt+h −Xt|Xt] = µXth+ o(h)

E

[
Xt+h −Xt

Xt
|Xt

]
= µh+

o(h)

Xt

⇒ lim
h→0+

1

h
E

[
Xt+h −Xt

Xt
|Xt

]
= µ

I.e., infinitesimal (instantaneous) expected local percentual increments of the share price are constant.

Analogous, we get for the local variance of the percentual increments:

E

{[
Xt+h −Xt

Xt
− E

(
Xt+h −Xt

Xt
|Xt

)]2

|Xt

}

= E

[(
Xt+h −Xt

Xt

)2

|Xt

]
−
[
E

(
Xt+h −Xt

Xt
|Xt

)]2

=
σ2X2

t h

X2
t

+
o(h)

X2
t

− µ2h2 − o2(h)

X2
t

− 2
µho(h)

Xt

⇒ lim
h→0+

1

h
V ar

[
Xt+h −Xt

Xt
|Xt

]
= σ2

i.e., infinitesimal (moments) of local variance are also constant.

We would now like to describe the increment of a diffusion process over some time interval I = [t0, te].

Let T = {t0 < t1 < · · · < tN = te} be an equidistant partition of the time axis, i.e. ∆t = ti+1−ti = const.

Choose the supporting points τi = [ti, ti+1], for i = 0, . . . , N − 1 and model the increments, with given

factors µ(·, ·), σ(·, ·) as follows:

Xti+1 −Xti := µ(τi, Xτi)(ti+1 − ti) + σ(τi, Xτi)(Wti+1 −Wti). (♣)

Lemma 5.1 If τi = ti, then the process defined by (♣), satisfies the requirements for the local expectation

and variance of a diffusion process.

Proof:

E{Xti+1 −Xti} = µ(ti, Xti)(ti+1 − ti) = µ(ti, Xti)∆t.

V ar{Xti+1 −Xti} = σ2(ti, Xti)∆t.
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The increment to the time tN is as follows:

XtN −Xt0 :=
N−1∑
i=0

(Xti+1 −Xti) =
N−1∑
i=0

µ(τi, Xτi)(ti+1 − ti)︸ ︷︷ ︸
S1

+
N−1∑
i=0

σ(τi, Xτi)(Wti+1 −Wti)︸ ︷︷ ︸
S2

. (L)

Our goal: Determine the limit of this process for N →∞, i.e. ∆t→ 0.

For the sum S1 considering the line integral is sufficient, i.e. for arbitrary supporting points τi = [ti, ti+1]

we define for every ω ∈ Ω a line integral.

Definition 5.12 Let µ : [0, T ] × R1 → R1 be a integrable function regarding time, then the following

random variable

Zµ(ω) =

te∫
t0

µ(t,Xt(ω))dt := lim
∆t→0

(N→∞)

N−1∑
i=0

µ(τi, Xτi)(ti+1 − ti),∀ω ∈ Ω

defines the line integral of κ with local expectation function µ.

Remark: The line integral is the generalisation of the Riemann integral from real analysis.

The limit of the sum S2 does not exist considering line integrals, given that the trajectories of the Wiener

process {Wt}t≥0 are nowhere differentiable. Thus, for S2 we need a different limiting approach, which

leads us to the stochastic integral.

Recall: Convergence of sequence of random variables {Xi}i=1,2,...

• weak and strong convergence to X

P ({ω : |Xn(ω)−X(ω)| > ε} −→
n→∞

0 (⇔) Xn →
p

(a.s.)

X,

• convergence in distribution

lim
n→∞

FXn(x) = FX(x) (⇔) Xn →
d
X,

• {Xi}i=1,2,... is convergent in quadratic mean over [Ω,L , P ] to X if

lim
n→∞

Ep{Xn −X}2 = 0 (⇔) qm lim
n→∞

Xn = X (⇔) Xn →
q.m

X.

We can apply the convergent in quadratic mean to the summands of the sum S2 through the sequence:

XN :=
N−1∑
i=0

σ(τi, Xτi)(Wti+1 −Wti), N = 1, 2, . . .

where T = T (N) = {t0 < t1 < . . . < tN te} and ∆t = te−t0
N = ti+1 − ti.
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Definition 5.13 If the sequence {Xi}i=1,2,... is convergent in quadratic mean, then

T∫
t0

σ(t,Xt)dWt := lim
n→∞

N−1∑
i=0

σ(τi, Xτi)(Wti+1 −Wti)

is called the stochastic integral of the factor σ(·, ·) regarding the Brownian motion.

Thus, its possible to transform and do a discretization of the capital growth of a course into a continuous

model.

If µ(·, ·) and σ(·, ·) are given drift and fluctuation functions, such that the line and stochastic integral exist,

then the process {Xt}t∈T is called the solution of the stochastic integral equation:

te∫
t0

dXt =

te∫
t0

µ(t,Xt)dt+

te∫
t0

σ(t,Xt)dWt

with the initial condition Xt0 = x0, or the solution of the stochastic differential equation:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt, t ∈ [t0, te]

with the initial condition Xt0 = x0.

Remark: The stochastic integral is defined as a real valued integral as a limit of a sequence, but the

concepts of taking the limit are completely different.

5.4.1 Properties of stochastic integrals

Let Wt be a Wiener process, and, w.l.o.g., assume that σ2 = 1.

S1) If c ∈ R1 is a constant, it holds:

te∫
t0

cdWt = c(Wte −Wt0) ∼ N(0, c2(te − t0))

which is a special case of the following property:

S2) If σ(·, ·) : [t0, te]→ R is square integrable, then it holds

te∫
t0

σ(t)dWt = X ∼ N

0,

te∫
t0

σ(t)2dt


Proof: For an arbitrary discretization {t0, t1, . . . , tN = te}, s.t. t0 < t1 < . . . < tN , and arbitrary
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supporting points τi ∈ [ti, ti+1], it holds

E

{
N−1∑
i=0

σ(τi)(Wti+1 −Wti)

}
= 0

⇒ E


te∫
t0

σ(t)dWt

 = 0

and given that the increments of the Brownian motion are independent, we get

V ar

{
N−1∑
i=0

σ(τi)(Wti+1 −Wti)

}
=

N−1∑
i=0

σ(τi)(ti+1 − ti) −→
∆t→0

te∫
t0

σ(t)2dt

⇒ V ar


te∫
t0

σ(t)dWt

 =

te∫
t0

σ(t)2dt.

Given that the sum of independent normally distributed random variables, is again a normal distributed

random variable, we have that
te∫
t0

σ(t)dWt is normally distributed.

S3) Let σ(·) (deterministict factor) be a non deterministict factor. For the simplest stochastic integral of

this form the following holds:

te∫
t0

WtdWt = qm lim
N→∞

N−1∑
i=0

Wτi(Wti+1 −Wti)

=
1

2
(W 2

te −W
2
t0) + (α− 1

2
)(te − t0)

where τi = (1− α)ti + αti+1 with α ∈ [0, 1], are supporting points for i = 1, . . . , N − 1.

Remark upon the proof: define the sequence {Xi}i=1,2,... with

Xn :=
N−1∑
i=0

Wτi(Wti+1 −Wti)

and shows that

qm lim
N→∞

=
1

2
(W 2

te −W
2
t0) + (α− 1

2
)(te − t0)

using the relationship: X ∼ N(0, σ2)⇒ EX4 = 3σ2EX2 = 3σ4.

Remark:
T∫
t0

WtdWt is dependent on the selection of supporting points (over α). We get a special

integral for α = 0, i.e. τi = ti (left interval limit) , i = 1, 2, . . . , N − 1.
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Definition 5.14 For α = 0 we get

te∫
t0

WtdWt =
1

2
(W 2

te −W
2
t0)− 1

2
(te − t0)

which is called the Itô integral.

The Itô integral has important applications in stochastic calculus of financial markets. α = 0 means

a non anticipatory trading strategy.

S4) Some properties that make it easier to work with the Itô integral

i)
te∫
t0

(dWt)
2 =

te∫
t0

dt, thus (dWt)
2 = dt,

ii)
te∫
t0

dtdWt = 0, thus dtdWt = 0,

iii)
te∫
t0

(dt)2 = 0, thus (dt)2 = 0.
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