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(Likelihood approach: Non-Gaussian) Bayesian approach Extension Example

Likelihood approach: Non-Gaussian Fields
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Figure: SIC97: Swiss rainfall data
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Figure: SIC97: BoxCox indep.
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Figure: SIC97: Profile likelihood of range
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Figure: SIC97: Profile likelihood of sill
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Profle-iog-likelihood for the nugge parameter
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Figure: SIC97: Profile likelihood of nugget
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SIC: Predicted rainfall

Figure: SIC97: Plug-in predictions
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(Likelihood approach: Non-G i .) Bayesian approach Extension Example

SIC: Standard deviations of OK-predictions
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Figure: SIC97: Plug-in standard deviations
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Figure: Likelihood influencing variogram
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Predictive Distribution of area150
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Figure: SIC97: Proportion of area >150
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(Likelihood approach: Non-Gaussian) Bayesian approach Extension Example

Exceedance probabilies P(Z(x)>250)
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Figure: SIC97: Exceedance probabilities > 250

12/ 46



Likelihood approach: Non-Gaussian Extension Example
Bayesian approach

Advantage: provides a general methodology for taking into
account the uncertainty about parameters on subsequent
predictions

Especially important for the Matérn class:
Large uncertainty about covariance parameters

It is impossible to obtain defensible MSE’s from the data
without incorporating prior information about these

However: caution is necessary when using usual
"noninformative" priors!

13 /46



Likelihood approach: Non-Gaussian Bayesian approach Extension Example

Bayesian solution: For making inferences about Z(xp) =: Zp,
use the predictive density p(Z;|Z2) given the data
Z=(2Z(xy),...,Z(xn)7,

P(Zo/Z) = / / p(Zol5.6,2)p(5. 61Z)d 3
© B

1 3

trend parameter covariance par.

where p(3, 0|Z) = posterior density

__ p(Z]5,9)p(5,0)
G{gp(zlﬁ, 0)p(5,0)d3do

 likelihood f. * prior d.
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Likelihood approach: Non-Gaussian Bayesian approach Extension Example

Trend modelling: EZ(x) = f(x)"3
using low-order-polynomials (degree < 2)

Covariance modelling: Matérn class with
Handcock-Wallis-parameterization

i) = 725ult) + 55 (22 ) e (2L

0 = (72,06%,v,p) € © = (0,00)*

Extension: Mixtures of 2 Matérn cov. functions
(short+large scale effects)
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Likelihood approach: Non-Gaussian Bayesian approach Extension Example

Prior modelling assumptions:

p(B,0) = p(B) p(#) a priori independence
~—~

@ subijective priors on intervals or integral-geometric priors,
Pilz 1992, 1996

@ locally uniformon R" : p(3) = 1
Handcock & Stein 1993

p(0) = 772072(1 + p)~2(1 + )72, 6 € (0,00)*

Handcock & Wallis 1994, Quian 1997,
Ecker & Gelfandt 1998:

P(Tz,aza ﬁv ﬁ) =7726"20n (0700)2 x (0, 1)2
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Likelihood approach: Non-Gaussian Bayesian approach Extension Example

Conclusion: Modelling of adequate priors for second order
parameters is a difficult task!

"Automatic” solutions such as in Cui, Stein & Myers (1995):
o2 ~ X2, p ~ Ex + independence, require further investigation

Also: Until recently, non-informative (reference) priors only
partially available (conditional on smoothness parameter v,
and nugget parameter excluded),

Berger et al. (JASA 2001). Paulo (AS, 2005),

De Qliveira (CJS, 2007)

Some progress: Kazianka (2009),
Kazianka and Pilz (2010)
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Likelihood approach: Non-Gaussian Extension Example
Empirical Bayes Solution

Initial proposal: Avoid cumbersome and dangerous
(mis-)specification of p(#) and let the data reveal the inherent
uncertainty, i.e. obtain a prior density for ¢ via

conditional simulation, assuming prior independence, to yield

p(5,012) o p(Z|0, 5) « p(B)  p(0)

likelihood f. uniform  simulation

Analytical expressions for posterior and/or predictive d.
are, however, only rarely available. Numerical evaluation
even necessary for the "simple" Gaussian case with
unknown variance (sill) of the field.
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Likelihood approach: Non-Gaussian Bayesian approach

1st Extension: Bayesian trans-Gaussian
Prediction

The transformed Gaussian Model

@ Observations from random field {Z(x) : x € X ¢ R9}.
@ Box-Cox family of power transformations (Box and Cox, 1964)
A1

[ 24 . az0
gA(z)_{log(Az) : A=0

De Oliveira et al. (1997): BTK

Example
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Likelihood approach: Non-Gaussian Bayesian approach Example

@ transforms the random field Z(x) for some unknown parameter A
to a Gaussian one

Y(x) = gA(Z(x)) = f(x)7 8 + €(x),
with unknown trend and unknown covariance function Cy(x1, X2).

@ Definition of prior for © = (), 9):

#6.0)=80) 60)

normal  simulation
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Likelihood approach: Non-Gaussian Bayesian approach Example

Posterior Predictive Distribution

P(22) = | PZ12.0) + p(OIZ)de
where
(212, 0) = N (Zsk(Xo), Vek(X0)) * Ir(2)
and
ZBK(XO) =Bayesian kriging predictor of the transformed data

Vi (Xo) =Bayes kriging variance at xg
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Likelihood approach: Non-Gaussian Bayesian approach Example
Parametric Bootstrap Algorithm

@ Estimate © = (A, 0) and 8 from a presample/subsample to get 6
and 5.

@ Simulate, at the these locations, realizations of the
transformed-Gaussian random field with parameters ©, .

@ From every simulated set of realizations reestimate © = (A, 0) to
geto;,i=1,2,...,N.

@ Having a set of N bootstrap samples ©;,i =1,2,...,N, the
Bayesian predictive distribution may be approximated by

I (Z
p(Z|Z) = tho ) * p(©;]2) * A'/(\/O)

where

h(Zo; ©)) = N(Z5, Vg:) — density
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Likelihood approach: Non-Gaussian Bayesian approach Example
Implementation: Matlab/Octave

@ Profile-likelihood approach: line search algorithm
@ Sensitivity w.r.t. starting values \g, ©g

@ Starting with estimation of A in each new cycle, then estimation
of new ©-values

@ Extension to estimate also the anisotropy axes.

www.uni-klu.ac.at/guspoeck/spatDesign V.2.0.0.zip
www.uni-klu.ac.at/guspoeck/spatDesignOctave V.2.0.0.zip
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Likelihood approach: Non-Gaussian Bayesian approach Extension

lllustration: Example data set

@ n = 148 measurements of Cs137
@ region of Gomel (Belarus), Fall 1996

@ Data ~ LN(logu = 0.664, logo = 1.475)
i.e. A =0 fixed
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Likelihood approach: Non-Gaussian Bayesian approach Extension
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Figure: Locations given (red) and locations to be predicted (blue)
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Likelihood approach: Non-Gaussian Bayesian approach Extension

Histogram of Gomel data

Figure: Histogram of Gomel data

26/ 46



Likelihood approach: Non-Gaussian Bayesian approach Extension

posterior of nugget

Figure: Bootstrapped nugget
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Likelihood approach: Non-Gaussian Bayesian approach Extension

posterior of sill

Figure: Bootstrapped sill
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Likelihood approach: Non-Gaussian Bayesian approach Extension

posterior of anisotropy axes

Figure: Bootstrapped anisotropy axes
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Likelihood approach: Non-Gaussian Bayesian approach Extension

posterior of convex combination parameter

Figure: Bootstrapped convex-combination parameter combining
exponential and Gaussian variogram
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Likelihood approach: Non-Gaussian Bayesian approach Extension

posterior of semivariograms along long anisotropy axes
7 T T T T

50 100 150 200 250 300 350 400 450 500

Figure: Semivariograms along long anisotropy axes
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Likelihood approach: Non-Gaussian Bayesian approach Extension

posterior of semivariograms along short anisotropy axes

Figure: Semivariograms along short anisotropy axes
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Likelihood approach: Non-Gaussian Bayesian approach Extension

posterior of lambda.

Figure: Bootstrapped Box-Cox parameter
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Likelihood approach: Non-Gaussian Bayesian approach Extension

Advantage

@ Complete probability distribution
(not only kriged values + variances)

@ we have median, quantiles, ...

— threshold values, confidence intervals a.s.o.
— complete means for uncertainty reporting
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(xy)=(134.7458,27.9661)

Figure: Posterior predictive distribution at (x,y)=(134.7,27.9)
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(x.y)=(48.3051,-17.7966)

Figure: posterior predictive distribution at (x,y)=(48.3,-17.8)
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Likelihood approach: Non-Gaussian Bayesian approach Extension

q0.95

Figure: 95% posterior predictive quantile
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Likelihood approach: Non-Gaussian Bayesian approach Extension

mean

0

Figure: posterior predictive mean
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Likelihood approach: Non-Gaussian Bayesian approach Extension
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Figure: posterior predictive standard deviation
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Likelihood approach: Non-Gaussian Bayesian approach Extension

treshold 8

Figure: probability to be above treshold 8.0
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Likelihood approach: Non-Gaussian Bayesian approach Extension

treshold 18

Figure: probability to be above treshold 18.0
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(cross)validation

Figure: predictive mean versus actual data
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(cross)validation
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8 8 858 & 8 3 8 8

5

50 60 70 8 90 100
quanile

Figure: percentage of data below quantile
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(cross)validation

expected percent data above threshold
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Figure: predicted percentage versus actual percentage of data above

treshold
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Likelihood approach: Non-Gaussian Bayesian approach Extension

Benefits/Issues

@ Require completely specified distributional model

@ Computationally intensive algorithms
(Trade-off: approx. of integrals vs. approx. of distributions)

@ We are rewarded, however:

@ rather flexible distributional model
@ framework for modeling uncertainties w.r.t. model parameters
@ predictive density provides us with a complete picture

@ Empirical Bayes solution needs further investigation
(simulation exhaustive?, size of subsamples?,...)
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Likelihood approach: Non-Gaussian Bayesian approach Extension

Homework

Analyze the surface elevation data in the geoR package using
the function krige.bayes. The data are available in that
package: data(elevation).
For modelling assume

@ linear Gaussian model

@ Matérn covariance function with smoothness v = x = 1.5

@ prior p(3,0%) x 072

@ discrete prior for range ¢ and relative nugget 72 /o2

Compare the plug-in and Bayes predictive distributions at two
locations: (x,y) = (5.4,0.4) and (x,y) = (1.7,0.7).

In particular, compare the standard deviations at these points.
Finally, compare the prior and posterior distributions for the
range and relative nugget parameters.
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