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Likelihood approach: Non-Gaussian Bayesian approach Extension Example

Likelihood approach: Non-Gaussian Fields
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Figure: SIC97: Swiss rainfall data
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Bayesian approach

Advantage: provides a general methodology for taking into
account the uncertainty about parameters on subsequent
predictions

Especially important for the Matérn class:
Large uncertainty about covariance parameters

It is impossible to obtain defensible MSE’s from the data
without incorporating prior information about these

However: caution is necessary when using usual
"noninformative" priors!

13 / 46
UBC Spatial Stats Course III



Likelihood approach: Non-Gaussian Bayesian approach Extension Example

Bayesian solution: For making inferences about Z (x0) =: Z0,
use the predictive density p(Z0|Z ) given the data
Z = (Z (x1), . . . ,Z (xn))T ,

p(Z0|Z) =

∫
Θ

∫
B

p(Z0|β, θ,Z)p(β, θ|Z)dβdθ

↓ ↓
trend parameter covariance par.

where p(β, θ|Z) = posterior density

=
p(Z|β, θ)p(β, θ)∫

Θ

∫
B

p(Z|β, θ)p(β, θ)dβdθ

∝ likelihood f. ∗ prior d.
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Trend modelling: EZ (x) = f (x)Tβ
using low-order-polynomials (degree ≤ 2)

Covariance modelling: Matérn class with
Handcock-Wallis-parameterization

Cθ(h) = τ2δ0(h) +
σ2

2ν−1Γ(ν)

(
2
√
ν

ρ
|h|
)ν

Kν

(
2
√
ν

ρ
|h|
)

θ = (τ2, σ2, ν, ρ) ∈ Θ = (0,∞)4

Extension: Mixtures of 2 Matérn cov. functions
(short+large scale effects)
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Prior modelling assumptions:

p(β, θ) = p(β)︸︷︷︸p(θ) a priori independence

subjective priors on intervals or integral-geometric priors,
Pilz 1992, 1996

locally uniform on Rr : p(β) ≡ 1
Handcock & Stein 1993

p(θ) = τ−2σ−2(1 + ρ)−2(1 + ν)−2, θ ∈ (0,∞)4

Handcock & Wallis 1994, Quian 1997,
Ecker & Gelfandt 1998:

p(τ2, σ2, ν
1+ν ,

ρ
1+ρ) = τ−2σ−2 on (0,∞)2 × (0,1)2

16 / 46
UBC Spatial Stats Course III



Likelihood approach: Non-Gaussian Bayesian approach Extension Example

Conclusion: Modelling of adequate priors for second order
parameters is a difficult task!

”Automatic” solutions such as in Cui, Stein & Myers (1995):
σ−2 ∼ χ2, ρ ∼ Ex + independence, require further investigation

Also: Until recently, non-informative (reference) priors only
partially available (conditional on smoothness parameter ν,
and nugget parameter excluded),
Berger et al. (JASA 2001). Paulo (AS, 2005),
De Oliveira (CJS, 2007)

Some progress: Kazianka (2009),
Kazianka and Pilz (2010)
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Likelihood approach: Non-Gaussian Bayesian approach Extension Example

Empirical Bayes Solution

Initial proposal: Avoid cumbersome and dangerous
(mis-)specification of p(θ) and let the data reveal the inherent
uncertainty, i.e. obtain a prior density for θ via
conditional simulation, assuming prior independence, to yield

p(β, θ|Z) ∝ p(Z|θ, β)︸ ︷︷ ︸
likelihood f.

∗p(β)︸︷︷︸
uniform

∗ p(θ)︸︷︷︸
simulation

Analytical expressions for posterior and/or predictive d.
are, however, only rarely available. Numerical evaluation
even necessary for the "simple" Gaussian case with
unknown variance (sill) of the field.
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1st Extension: Bayesian trans-Gaussian
Prediction

The transformed Gaussian Model

Observations from random field {Z (x) : x ∈ X ⊂ Rd}.

Box-Cox family of power transformations (Box and Cox, 1964)

gλ(z) =

{
zλ−1

λ : λ 6= 0
log(z) : λ = 0

De Oliveira et al. (1997): BTK

19 / 46
UBC Spatial Stats Course III



Likelihood approach: Non-Gaussian Bayesian approach Extension Example

transforms the random field Z (x) for some unknown parameter λ
to a Gaussian one

Y (x) = gλ(Z (x)) = f(x)Tβ + ε(x),

with unknown trend and unknown covariance function Cθ(x1, x2).

Definition of prior for Θ = (λ, θ):

p(β,Θ) = p(β)︸︷︷︸
normal

∗ p(Θ)︸ ︷︷ ︸
simulation
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Posterior Predictive Distribution

p(Z0|Z) =

∫
Θ

p(Z0|Z,Θ) ∗ p(Θ|Z)dΘ

where

p(Z0|Z,Θ) = N (ẐBK (x0),VBK (x0)) ∗ Jλ(Z0)

and

ẐBK (x0) =Bayesian kriging predictor of the transformed data

VBK (x0) =Bayes kriging variance at x0
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Parametric Bootstrap Algorithm

Estimate Θ = (λ, θ) and β from a presample/subsample to get Θ̂
and β̂.

Simulate, at the these locations, realizations of the
transformed-Gaussian random field with parameters Θ̂, β̂.

From every simulated set of realizations reestimate Θ = (λ, θ) to
get Θ̂i , i = 1,2, . . . ,N.

Having a set of N bootstrap samples Θi , i = 1,2, . . . ,N, the
Bayesian predictive distribution may be approximated by

p(Z0|Z) =
N∑

i=1

h(Z0; Θi ) ∗ p(Θi |Z) ∗ Jλi (Z0)

N

where

h(Z0; Θi ) = N (Ẑ Θi
BK ,V

Θi
BK )− density
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Likelihood approach: Non-Gaussian Bayesian approach Extension Example

Implementation: Matlab/Octave

Profile-likelihood approach: line search algorithm

Sensitivity w.r.t. starting values λ0,Θ0

Starting with estimation of λ in each new cycle, then estimation
of new Θ-values

Extension to estimate also the anisotropy axes.

www.uni-klu.ac.at/guspoeck/spatDesign V .2.0.0.zip
www.uni-klu.ac.at/guspoeck/spatDesignOctave V .2.0.0.zip
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Likelihood approach: Non-Gaussian Bayesian approach Extension Example

Illustration: Example data set

n = 148 measurements of Cs137

region of Gomel (Belarus), Fall 1996

Data ∼ LN(logµ = 0.664, logσ = 1.475)

i.e. λ = 0 fixed
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Figure: Locations given (red) and locations to be predicted (blue)
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Figure: Histogram of Gomel data
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Figure: Bootstrapped convex-combination parameter combining
exponential and Gaussian variogram
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Figure: Semivariograms along long anisotropy axes
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Figure: Semivariograms along short anisotropy axes
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Figure: Bootstrapped Box-Cox parameter
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Advantage

Complete probability distribution
(not only kriged values + variances)

we have median, quantiles, ...
−→ threshold values, confidence intervals a.s.o.
−→ complete means for uncertainty reporting
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Figure: 95% posterior predictive quantile
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mean
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Figure: posterior predictive mean
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standard deviation
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Figure: posterior predictive standard deviation
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treshold 8
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Figure: probability to be above treshold 8.0
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treshold 18

 

 

−100 −50 0 50 100

−100

−80

−60

−40

−20

0

20

40

60

80

100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure: probability to be above treshold 18.0
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Figure: predictive mean versus actual data
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Figure: percentage of data below quantile
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Figure: predicted percentage versus actual percentage of data above
treshold
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Likelihood approach: Non-Gaussian Bayesian approach Extension Example

Benefits/Issues

Require completely specified distributional model

Computationally intensive algorithms
(Trade-off: approx. of integrals vs. approx. of distributions)

We are rewarded, however:

rather flexible distributional model
framework for modeling uncertainties w.r.t. model parameters
predictive density provides us with a complete picture

Empirical Bayes solution needs further investigation
(simulation exhaustive?, size of subsamples?,...)
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Homework
Analyze the surface elevation data in the geoR package using
the function krige.bayes. The data are available in that
package: data(elevation).

For modelling assume

linear Gaussian model

Matérn covariance function with smoothness ν = κ = 1.5

prior p(β, σ2) ∝ σ−2

discrete prior for range φ and relative nugget τ2/σ2

Compare the plug-in and Bayes predictive distributions at two
locations: (x , y) = (5.4,0.4) and (x , y) = (1.7,0.7).
In particular, compare the standard deviations at these points.
Finally, compare the prior and posterior distributions for the
range and relative nugget parameters.
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