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1. Introduction

Key issue in semiconductor manufacturing:
Reliability

most commonly applied failure screening technique: Burn-in-study,
especially in safety-critical applications

Basis: bathtub curve describing hazard rate

Early Life Wear Out

(decreasing 7.) (increasing )
Useful Life
| (constant 7.)
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Testing under accelerated stress conditions
(increased temperature & voltage stress)

Burn-in: independently selected number of devices is investigated for
early failures

Model for early failures: Weibull distribution Wb(a, b), b < 1.

Current ppm-requirement: 21ppm (Infineon Technologies Villach,
Austria)

Burn-in schemes different for logic and power devices. Here we focus
on power devices.

Reasons for early failure: oxide particles, metallization defects,...
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Problem: only very few failures

= it’s rarely possible to efficiently fit a Weibull DFR distribution
to burn-in data.

Way out: prove that early life failure probability p € target confidence
area

Burn-in read-outs at discrete time points t;, b, t3
Report statistics: k; = # failures in (f_4, ]

j=1,2,3:1%=0
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Goal: P (early life failure after t3 hours) < 21ppm
Successful burn-in: requires k = ki + ko + k3 =0

(zero defect strategy)

Usually: Burn-in is re-started whenever a failure occurs

Current standard: introduction of countermeasures (CM)
(ink out, design measures, optical inspection, ...)
to reduce the failure probability p

Our aim:

@ development of a statistical model for taking account of CM’s

@ avoid re-start of burn-in by planning additional number of items to
be burnt for zero defects.

Jurgen Pilz (AAU Klagenfurt) GDRR 2013 Kinsale, July 8 6/38



2. Interval estimation for early life failure probabilities

n independently selected devices are stressed

x _ | 0 ifdevice i passes the burn-in
’ 1 if device / fails within burn-in

n
X =YX~ Bi(n,p)
i=1
Xx=(x,...,xn) €{0,1}" k=x"xe{0,1,...,n}

= # failures
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2.1 Clopper-Pearson interval estimation

Icp = (P, Pu) where
P(X > k|p)) = a/2 and
P(X < Kk|pu) = a/2

To obtain p; and p,, we use the well-known relationship with the
Beta distribution

b= F'(a/2) with Z ~ Be(k,n— k + 1)
pu=Fz'(1 - a/2) with Z, ~ Be(k +1,n— k)
90% one-sided interval I, = [0, p,]; «/2 = 0.1
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2.2 Bayesian equal-tail interval for p

In a Bayesian framework, this relationship comes in naturally
observing that the conjugate prior for p is the Beta distribution:

p~ Be(a,b); a,b>0

= f(p|x) x I(p; x)f(p) = p?TK=1(1 — p)Ptn—k-

i.e. p|x ~ Be(a* =a+k,b*=b+n—k)
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Bayesian equal-tail credible interval

Co = (B1. B;) where B = F}(a/2). P = Fyl(1— /2)

Jeffreys’ prior: a=b=1/2

Choosing a=1,b = 0 we have
p|x = Be(k+1,n—k)
ﬁzzﬁu

concidence of one-sided Bayesian interval with Clopper-Pearson
interval
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3. Assessing ppm-levels using CM’s

Repair is impossible for semiconductor devices; they either pass or fail
within the burn-in.

If a burn-in related failure occurs, then a CM is introduced (optical
inspection, process improvement, ...) aiming to reduce pto = < p.

Crucial: Experts assess the CM’s effectiveness o € [0, 1]

¥ = probability of correcting the failure.
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3.1 Single CM failure probability model

Consider k failures for which a single CM with effectiveness ¥ € [0, 1]
is implemented in the process

Interpretation: There is a likelihood ¢; that j < k failures would have
occured or, equivalently, k — j failures would have been corrected if the
CM would have already been introduced before the burn-in study.

Let K = 1 if failure / is corrected
0 else
K
Clearly: K = > K; ~ Bi(k,¥)

=1
1

unknown number of failures that would have been caught by the CM

= (x) §=P(K=k—j); je{0,....k}
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Clopper-Pearson model for single CM

after the CM: X’ ~ Bi(n, )

Weighting of Clopper-Pearson upper limits according to (x) leads to
assessing 7 as

k

> GPX < jIf) =a

j=0
Equivalently: using P(X’ < jir) =1 - P(Z; < )
with Z ~ Be(j+1,n—j); j=0,....k

= # = F,'(1—a) = (1 — a)-quantile of

K
Z ~ Y ¢Be(j+1,n— j) Beta mixture
j=0
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Bayesian model for single CM

prior T ~ Be(a, b)
actual number of failures after CM introduction is kK — K and is unknown

Therefore consider the preposterior:

k k
== E[rlk - Kl =) _&(alj) ~ Y _¢Be(a+j.b+n—j)
j=0 j=0
— #* = Fz'(1 — a) = (1 — &) -quantile of the mixture distribution =.
Again: 7* = 7 for the prior 7 ~ Be(1,0)

Setting ¥ = 0 (no CM is implemented) we arrive at the classical
estimation models.
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3.2 Multiple CM failure model

now consider r > 1 different CM’s and denote ¥ = (¢4,...,9;) =
vector of effectivenesses; r < k

k = (ky,...,k); ki = # failures tackled by CM;

,
with Y~ ki =k
i=1
k
Now: K = )" Kj ~ GBi(k, ) generalized binomial, where
I=1
ﬂk - (1917...,191,192,...’7_92,...,19/,...,'[9,‘)
N —

k times  k, times k- times

We have developed an efficient method for computing generalized
binomial probabilities employing sequential convolution.
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3.3 CM’s with uncertain effectivenesses

So far: 9;,i =1,...,r; were fixed

often: process experts are uncertain about the effectivenesses of the
applied CM’s.

a) Beta-Binomial model for a single uncertain effectiveness, r = 1
v ~ Be(u, v)
K|¢ ~ Bi(k,9)

=¢§ =PK=k—j)= } P(K = k — j|v)f(v)d9
0

_( k >I’(u+k—j)r(v+j) M(utv)
=\ k—j Futhktv)  TOTM)

K ~ BeBi(k, u, v) Beta-Binomial
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b) Generalized Beta-Binomial model for more than a single uncertain
effectiveness

K|9 ~ GBi(k,9k)
Vi~ Be(u,v;);, i=1,...,r

= PK=k—j)= [ P(K=k—j9)f(9)d9
[0.1)"

K ~ GBeBi(k,uq,...,Ur,Vi,...,Vr, Ky, ..., k)
no closed form solution available,

MC-integration
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4. Decision-theoretical formulation of the CM

failure probability model

Parameter space: p € © = [0, 1]

after implementing CM’s: 7 € @ = © = [0, 1] with 7 < p
Action space: without CM's a=p € A= [0,1]

after incorporating CM’s: & =4 € A’ = A =[0,1]
Sample space of Burn-in data: X|p ~ Bi(n, p)
X=(x1,...,%) € X ={0,1}"

can be sulfficiently described by

T={x"x:xcx}={0,1,...,n}
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after implementing CM’s: we simulate failure scenarios j € 7,
based on the observed k € 7; 0 <j < k; as outcomes, which would
have possibly occured if we would have introduced the CM’s already
before the burn-in.

To these scenarios we attach prob’s &;
(assessed wrt. the CM’s effectivenesses)

Assessment of the ¢;: for single CM by means of Bi(k, ), i.e.
simulation depends on k € 7 and ¢ € [0, 1].
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in case of r < k different CM’s:

&j determined by GBi(k,¥x) where k = (ky, ..., k) € K reports the
number of failures k; tackled by CM;; i=1,...,r. There are

K| = ( r+ l;(_ 1 > different vectors k

Simulations depend on observed k € 7,9 € [0,1]" and k
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Decision functions

d: T — Aand d(k) = p ppm—level estimator extension in the CM
decision framework

Single CM case: d’ : T x [0,1] — A" with d'( @ y=re A

failure scenario
Multiple CM case: d' : T x [0,1]" x K — A’
with o'(k, 9, k) = # € A’
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under-estimation of p and «, resp., is more critical than over-estimation

propose asymmetric linear loss, i.e.

. [ hp-p) itp<p
L(P,d(k)—P)—{ h(p—p) ifp >p

for the other cases: replace p and d by = and d’, respectively.
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in the most general case of multiple CM we have

n |K|

=> Y L(r d'(k,9,k)))

k=0 i=1
Z£Ij —/|7T
where §ij = P(K = k — j) with K ~ GBi(k,ﬁk/.)

i=1,...,K]; j=0,... .k
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5. Bayes decisions and application of the CM failure

model

consider only CM decision framework with a single CM
need to specify a prior f()

Bayes optimal solution minimizes the preposterior expected loss: with
7 ~ Be(a, b) we obtain the preposterior distribution as Beta mixture

k
rlk, 0~ ¢Be(a+ j.b+n—))
j=0

.. _ Iy
= Bayes decision # Fﬂm </1+/2)
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New approach

usual burn-in strategy: if failures occur, CM’s need to be installed.
Hereafter, the burn-in study has to be repeated.

Our new approach: do not repeat burn-in, but extend the running
burn-in study by increasing the sample size to " = n+ n* so that

k
Z‘EIP(XI < j|n/7 ’ﬁtarget = :E\)targe‘) =0.1
j=0

Rationale: Take n* < n additional devices and prove that the target
ppm—level is still guaranteed on the basis of the CM model

Efficiency of the new approach: illustration for single CM case
(different degrees of effectiveness) and k = 1,2, 3.
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Significant reduction of n* for high effectiveness
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6. Bayesian assessment of Weibull early life failure

distributions

Burn-in settings (read-outs, burn-in time, ...) are typically assessed
using a Weibull DFR distribution Wb(a, b) with

scale a > 0 and shape b € (0,1)

crucial point: joint prior p(a, b)
@ There is no continuous conjugate joint prior

@ Conjugate continuous-discrete joint prior:
Gamma dist. for g, categorical distr. for b
(Soland 1969)

@ Jeffreys’ prior: py(a,b) < 1/ab
(Sinha 1986)
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We propose two alternatives:

@ Histogram prior (specification remains still challenging)
@ Dirichlet prior

Let T ~ Wb(a, b) with density
tt=Texp(—(L)P) t>0

f(tla, b) x
0 else

where a>0,0< b < 1

Burn-in read outs at fixed time points t,...,t;, > 0

Jurgen Pilz (AAU Klagenfurt) GDRR 2013 Kinsale, July 8 28/38



Specification of the prior:

F(t") ~ Be(u;, vj); uj,vi >0, i=1,....m)

u; = prior exp. number of early life failures before time t*

vi = prior exp. number of failures surviving burn-in time t*

More efficiently, we summarize prior knowledge by means of a
Dirichlet prior

pi = F(t) — F(t_4) = prob. of early failure within (&*_,, /]
P= (P, Pm1)" ~ Dir(® = (V1,...,0m1))

m
Here we set 91 = 0* — > 0
i=1
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U* regulates prior confidence through

E(p) = (01/9",...,9ms1/9")
Obviously: ¢; =uj—uj_1; i=1,....m+1

= complete specification: p ~ Dir(¥) with 9 = 9*E(p)

Joint prior p(a, b) for Weibull parameters:

Draw samples of p1, ..., pms+1 and compute
i
Ft)=> pi i=1,....m
j=1

Each pair (F(7), F(t")) with i,j=1,...,m;i < j defines a sample
(aj, bj) of the joint prior p(a, b) via the equations
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F(t7) =1 — exp(—(t'/a;)").
F(t) =1 —exp(—(t7 /ay)").
Explicitly, we get:
t*
bj = {In(=In(1 — £())) — In(=In(1 = F(£)))}/In =
aj =exp{int; — bl,-,v In(—In(1 — F(t)))}
For s Dirichlet draws py, ..., ps; we obtain q x s pairs (aj, bj)

where g = #{(F(t7),F(t7)): i<j=1,...,m}
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Updating Weibull early life failure distributions

Whenever failures occur, the current information on the Weibull lifetime
distrib. should be updated.

Data might be available as

k= (ki,...,kmy1)| : ki = #failures € (£ 4, t/]
or in form of time-to-failure data

m+1

t:(t1a"'7tk)T; k:Zkl
i=1

Notice: k1 = # failures not detected by the burn-in is not directly
available.
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Joint posterior f(a, b|k)

Regarding k = (K1, ..., kns1) as a sample from MN(k, p), we obtain
the posterior by

sampling (aj|k, bjlk); i=1,...,s8; j=1,...q

according to the above equations using simulations from the
Dirichlet posterior

plk ~ Dir(®9 + k)

When we are given given time-to-failure data t = (,..., t%)7, then the
joint posterior f(a, b|t) can be obtained according to the
Metropolis-Hastings algorithm given in Kurz, Lewitschnig and Pilz
(2013), where also HPD-regions for (&, b) are provided.
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Update contd

Update of the Weibull lifetime distribution:
F(t|la, b) — F(t|&",b")
where (&*,b%) = argagg%gf(a, b|data)
= MAP estimate

Dynamical update through Bayesian learning
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3 standardized read-out times
tf =1h,t; =2h,t; = 4h
read-outs based on Weibull early life failure distribution
T ~ Wb(a=0.5b=0.75)
Dirichlet prior: E(p) = (0.81,0.13,0.05,0.01)
expected interval failure probabilities

setting ¥* =100 = p ~ Dir(81,13,5,1)
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Dirichlet draws pyq, ..., ps define samples

(F(#),F(t),F(t3)); i=1,...,s

We form pairs (F (), F(t3)) and (F(f), F(t;)); and proceed as shown
before to get

& = 0.505, b* = 0.768
= prior specification is suitable
Data: k = (k1 =20, kp =2, kg =1, ks = 7)7

ks = 7 failures not detected within t; = 4 hours
(burn-in time not adequate)

= posterior: p|k ~ Dir(101,15,6, 8),
Whb(0.5,0.75) shifted to Wb(&* = 0.409, b* = 0.485)
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HPD region for Weibull parameters (&, b)
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