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1. Introduction

Key issue in semiconductor manufacturing:

Reliability

most commonly applied failure screening technique: Burn-in-study,
especially in safety-critical applications

Basis: bathtub curve describing hazard rate
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Testing under accelerated stress conditions
(increased temperature & voltage stress)

Burn-in: independently selected number of devices is investigated for
early failures

Model for early failures: Weibull distribution Wb(a,b),b < 1.

Current ppm-requirement: 21ppm (Infineon Technologies Villach,
Austria)

Burn-in schemes different for logic and power devices. Here we focus
on power devices.

Reasons for early failure: oxide particles, metallization defects,...
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Problem: only very few failures

⇒ it’s rarely possible to efficiently fit a Weibull DFR distribution
to burn-in data.

Way out: prove that early life failure probability p ∈ target confidence
area

Burn-in read-outs at discrete time points t1, t2, t3

Report statistics: kj = # failures in (tj−1, tj ]

j = 1,2,3; t0 = 0
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Goal: P (early life failure after t3 hours) ≤ 21ppm

Successful burn-in: requires k = k1 + k2 + k3 = 0

(zero defect strategy)

Usually: Burn-in is re-started whenever a failure occurs

Current standard: introduction of countermeasures (CM)
(ink out, design measures, optical inspection, ...)
to reduce the failure probability p

Our aim:

development of a statistical model for taking account of CM’s
avoid re-start of burn-in by planning additional number of items to
be burnt for zero defects.
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2. Interval estimation for early life failure probabilities

n independently selected devices are stressed

Xi =

{
0 if device i passes the burn-in
1 if device i fails within burn-in

X =
n∑

i=1

Xi ∼ Bi(n,p)

x = (x1, . . . , xn) ∈ {0,1}n; k = xT x ∈ {0,1, . . . ,n}

= # failures
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2.1 Clopper-Pearson interval estimation

ICP = (p̂l , p̂u) where

P(X ≥ k |p̂l) = α/2 and

P(X ≤ k |p̂u) = α/2

To obtain p̂l and p̂u, we use the well-known relationship with the
Beta distribution

p̂l = F−1
Zl

(α/2) with Zl ∼ Be(k ,n − k + 1)

p̂u = F−1
Zu

(1− α/2) with Zu ∼ Be(k + 1,n − k)

90% one-sided interval Ip = [0, p̂u]; α/2 = 0.1
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2.2 Bayesian equal-tail interval for p

In a Bayesian framework, this relationship comes in naturally
observing that the conjugate prior for p is the Beta distribution:

p ∼ Be(a,b); a,b > 0

⇒ f (p|x) ∝ l(p; x)f (p) = pa+k−1(1− p)b+n−k−1

i.e. p|x ∼ Be(a∗ = a + k ,b∗ = b + n − k)
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Bayesian equal-tail credible interval

Ce = (p̂∗l , p̂
∗
u) where p̂∗l = F−1

p|x (α/2), p̂∗u = F−1
p|x (1− α/2)

Jeffreys’ prior: a = b = 1/2

Choosing a = 1,b = 0 we have

p|x = Be(k + 1,n − k)

p̂∗u = p̂u

concidence of one-sided Bayesian interval with Clopper-Pearson
interval
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3. Assessing ppm-levels using CM’s

Repair is impossible for semiconductor devices; they either pass or fail
within the burn-in.

If a burn-in related failure occurs, then a CM is introduced (optical
inspection, process improvement, ...) aiming to reduce p to π ≤ p.

Crucial: Experts assess the CM’s effectiveness ϑ ∈ [0,1]

ϑ = probability of correcting the failure.
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3.1 Single CM failure probability model

Consider k failures for which a single CM with effectiveness ϑ ∈ [0,1]
is implemented in the process

Interpretation: There is a likelihood ξj that j ≤ k failures would have
occured or, equivalently, k − j failures would have been corrected if the
CM would have already been introduced before the burn-in study.

Let Kl =

{
1 if failure l is corrected
0 else

Clearly: K =
k∑

l=1
Kl ∼ Bi(k , ϑ)

↓
unknown number of failures that would have been caught by the CM

⇒ (∗) ξj = P(K = k − j); j ∈ {0, . . . , k}
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Clopper-Pearson model for single CM

after the CM: X ′ ∼ Bi(n, π)

Weighting of Clopper-Pearson upper limits according to (∗) leads to
assessing π̂ as

k∑
j=0

ξjP(X ′ ≤ j |π̂) = α

Equivalently: using P(X ′ ≤ j |π) = 1− P(Zj < π)

with Zj ∼ Be(j + 1,n − j); j = 0, . . . , k

⇒ π̂ = F−1
Z ′

(1− α) = (1− α)-quantile of

Z
′ ∼

k∑
j=0

ξjBe(j + 1,n − j) Beta mixture
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Bayesian model for single CM

prior π ∼ Be(a,b)

actual number of failures after CM introduction is k −K and is unknown

Therefore consider the preposterior:

Ξ := E [π|k − K ] =
k∑

j=0

ξj(π|j) ∼
k∑

j=0

ξjBe(a + j ,b + n − j)]

→ π̂∗ = F−1
Ξ (1− α) = (1− α) -quantile of the mixture distribution Ξ.

Again: π̂∗ = π̂ for the prior π ∼ Be(1,0)

Setting ϑ = 0 (no CM is implemented) we arrive at the classical
estimation models.
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3.2 Multiple CM failure model

now consider r ≥ 1 different CM’s and denote ϑ = (ϑ1, . . . , ϑr ) =
vector of effectivenesses; r ≤ k

k = (k1, . . . , kr ); ki = # failures tackled by CMi

with
r∑

i=1
ki = k

Now: K =
k∑

l=1
Kl ∼ GBi(k ,ϑk ) generalized binomial, where

ϑk = (ϑ1, . . . , ϑ1︸ ︷︷ ︸
k1 times

, ϑ2, . . . , ϑ2︸ ︷︷ ︸
k2 times

, . . . , ϑr , . . . , ϑr︸ ︷︷ ︸
kr times

)

We have developed an efficient method for computing generalized
binomial probabilities employing sequential convolution.
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3.3 CM’s with uncertain effectivenesses

So far: ϑi , i = 1, . . . , r ; were fixed

often: process experts are uncertain about the effectivenesses of the
applied CM’s.

a) Beta-Binomial model for a single uncertain effectiveness, r = 1

ϑ ∼ Be(u, v)

K |ϑ ∼ Bi(k , ϑ)

⇒ ξj = P(K = k − j) =
1∫
0

P(K = k − j |ϑ)f (ϑ)dϑ

=

(
k

k − j

)
Γ(u+k−j)Γ(v+j)

Γ(u+k+v)
Γ(u+v)

Γ(u)Γ(v)

K ∼ BeBi(k ,u, v) Beta-Binomial
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b) Generalized Beta-Binomial model for more than a single uncertain
effectiveness

K |ϑ ∼ GBi(k ,ϑk )

ϑi ∼ Be(ui , vi); i = 1, . . . , r

⇒ P(K = k − j) =
∫

[0,1]r
P(K = k − j |ϑ)f (ϑ)dϑ

K ∼ GBeBi(k ,u1, . . . ,ur , v1, . . . , vr , k1, . . . , kr )

no closed form solution available,

MC-integration
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4. Decision-theoretical formulation of the CM
failure probability model

Parameter space: p ∈ Θ = [0,1]

after implementing CM’s: π ∈ Θ
′

= Θ = [0,1] with π ≤ p

Action space: without CM’s a = p̂ ∈ A = [0,1]

after incorporating CM’s: a′ = π̂ ∈ A′ = A = [0,1]

Sample space of Burn-in data: X |p ∼ Bi(n,p)

x = (x1, . . . , xn) ∈ X = {0,1}n

can be sufficiently described by

T = {xT x : x ∈ X} = {0,1, . . . ,n}
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after implementing CM’s: we simulate failure scenarios j ∈ T ,
based on the observed k ∈ T ; 0 ≤ j ≤ k ; as outcomes, which would
have possibly occured if we would have introduced the CM’s already
before the burn-in.

To these scenarios we attach prob’s ξj
(assessed wrt. the CM’s effectivenesses)

Assessment of the ξj : for single CM by means of Bi(k , ϑ), i.e.
simulation depends on k ∈ T and ϑ ∈ [0,1].

Jürgen Pilz (AAU Klagenfurt) GDRR 2013 Kinsale, July 8 19 / 38



in case of r ≤ k different CM’s:

ξj determined by GBi(k ,ϑk ) where k = (k1, . . . , kr ) ∈ K reports the
number of failures kj tackled by CMi ; i = 1, . . . , r . There are

|K| =

(
r + k − 1

k

)
different vectors k

Simulations depend on observed k ∈ T ,ϑ ∈ [0,1]r and k
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Decision functions

d : T → A and d(k) = p̂ ppm−level estimator extension in the CM
decision framework

Single CM case: d ′ : T × [0,1]→ A′ with d ′( k , ϑ︸︷︷︸
failure scenario

) = π̂ ∈ A′

Multiple CM case: d ′ : T × [0,1]r ×K → A′

with d ′(k ,ϑ,k) = π̂ ∈ A′
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Loss function

under-estimation of p and π, resp., is more critical than over-estimation

propose asymmetric linear loss, i.e.

L(p,d(k) = p̂) =

{
l1(p − p̂) if p̂ ≤ p
l2(p̂ − p) if p̂ > p

for the other cases: replace p and d by π and d ′, respectively.

Jürgen Pilz (AAU Klagenfurt) GDRR 2013 Kinsale, July 8 22 / 38



Risk function

in the most general case of multiple CM we have

R((π,ϑ),d ′) =
n∑

k=0

|K|∑
i=1

L(π,d ′(k ,ϑ,k i))

∗
k∑

j=0

ξijP(X ′ = j |π)

where ξij = P(K = k − j) with K ∼ GBi(k ,ϑk i )

i = 1, . . . , |K|; j = 0, . . . , k
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5. Bayes decisions and application of the CM failure
model

consider only CM decision framework with a single CM

need to specify a prior f (π)

Bayes optimal solution minimizes the preposterior expected loss: with
π ∼ Be(a,b) we obtain the preposterior distribution as Beta mixture

π|k , ϑ ∼
k∑

j=0

ξjBe(a + j ,b + n − j)

⇒ Bayes decision π̂∗ = F−1
π|k ,ϑ

(
l1

l1+l2

)
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New approach

usual burn-in strategy: if failures occur, CM’s need to be installed.
Hereafter, the burn-in study has to be repeated.

Our new approach: do not repeat burn-in, but extend the running
burn-in study by increasing the sample size to n′ = n + n∗ so that

k∑
j=0

ξjP(X ′ ≤ j |n′, π̂target = p̂target) = 0.1

Rationale: Take n∗ < n additional devices and prove that the target
ppm−level is still guaranteed on the basis of the CM model

Efficiency of the new approach: illustration for single CM case
(different degrees of effectiveness) and k = 1,2,3.
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Significant reduction of n∗ for high effectiveness
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6. Bayesian assessment of Weibull early life failure
distributions

Burn-in settings (read-outs, burn-in time, ...) are typically assessed
using a Weibull DFR distribution Wb(a,b) with

scale a > 0 and shape b ∈ (0,1)

crucial point: joint prior p(a,b)

There is no continuous conjugate joint prior
Conjugate continuous-discrete joint prior:
Gamma dist. for a, categorical distr. for b
(Soland 1969)
Jeffreys’ prior: pJ(a,b) ∝ 1/ab
(Sinha 1986)
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We propose two alternatives:

Histogram prior (specification remains still challenging)
Dirichlet prior

Let T ∼Wb(a,b) with density

f (t |a,b) ∝


tb−1 exp(−( t

a )b) t > 0

0 else

where a > 0,0 < b < 1

Burn-in read outs at fixed time points t∗1 , . . . , t
∗
m > 0
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Specification of the prior:

F (t∗i ) ∼ Be(ui , vi); ui , vi > 0, i = 1, . . . ,m)

ui =̂ prior exp. number of early life failures before time t∗i

vi =̂ prior exp. number of failures surviving burn-in time t∗i

More efficiently, we summarize prior knowledge by means of a
Dirichlet prior

pi = F (t∗i )− F (t∗i−1) = prob. of early failure within (t∗i−1, t
∗
i ]

p = (p1, . . . ,pm+1)T ∼ Dir(ϑ = (ϑ1, . . . , ϑm+1))

Here we set ϑm+1 = ϑ∗ −
m∑

i=1
ϑi
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ϑ∗ regulates prior confidence through

E(p) = (ϑ1/ϑ
∗, . . . , ϑm+1/ϑ

∗)

Obviously: ϑi = ui − ui−1; i = 1, . . . ,m + 1

⇒ complete specification: p ∼ Dir(ϑ) with ϑ = ϑ∗E(p)

Joint prior p(a,b) for Weibull parameters:

Draw samples of p1, . . . ,pm+1 and compute

F (t∗i ) =
i∑

j=1

pj ; i = 1, . . . ,m

Each pair (F (t∗i ),F (t∗j )) with i , j = 1, . . . ,m; i < j defines a sample
(aij ,bij) of the joint prior p(a,b) via the equations
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F (t∗i ) = 1− exp(−(t∗i /aij)
bij ).

F (t∗j ) = 1− exp(−(t∗j /aij)
bij ).

Explicitly, we get:

bij = {ln(− ln(1− F (t∗j )))− ln(− ln(1− F (t∗i )))}/ ln
t∗j
t∗i

aij = exp{ln t∗i −
1
bij

ln(− ln(1− F (t∗i )))}

For s Dirichlet draws p1, . . . ,ps we obtain q ∗ s pairs (aij ,bij)

where q = #{(F (t∗i ),F (t∗i )) : i < j = 1, . . . ,m}
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Updating Weibull early life failure distributions

Whenever failures occur, the current information on the Weibull lifetime
distrib. should be updated.

Data might be available as

k = (k1, . . . , km+1)T : ki = #failures ∈ (t∗i−1, t
∗
i ]

or in form of time-to-failure data

t = (t1, . . . , tk )T ; k =
m+1∑
i=1

ki

Notice: km+1 = # failures not detected by the burn-in is not directly
available.
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Joint posterior f (a,b|k)

Regarding k = (k1, . . . , km+1) as a sample from MN(k ,p), we obtain
the posterior by

sampling (aij |k ,bij |k); i = 1, . . . , s; j = 1, . . .q

according to the above equations using simulations from the
Dirichlet posterior

p|k ∼ Dir(ϑ + k)

When we are given given time-to-failure data t = (t1, . . . , tk )T , then the
joint posterior f (a,b|t) can be obtained according to the
Metropolis-Hastings algorithm given in Kurz, Lewitschnig and Pilz
(2013), where also HPD-regions for (a,b) are provided.
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Update cont’d

Update of the Weibull lifetime distribution:

F (t |a,b) −→ F (t |â∗, b̂∗)

where (â∗, b̂∗) = arg max
a>0,b<1

f (a,b|data)

= MAP estimate

Dynamical update through Bayesian learning
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Example

3 standardized read-out times

t∗1 = 1h, t∗2 = 2h, t∗3 = 4h

read-outs based on Weibull early life failure distribution

T ∼Wb(a = 0.5,b = 0.75)

Dirichlet prior: E(p) = (0.81,0.13,0.05,0.01)

expected interval failure probabilities

setting ϑ∗ = 100⇒ p ∼ Dir(81,13,5,1)
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Dirichlet draws p1, . . . ,ps define samples

(F (t∗1 ),F (t∗2 ),F (t∗3 )); i = 1, . . . , s

We form pairs (F (t∗1 ),F (t∗2 )) and (F (t∗1 ),F (t∗3 )); and proceed as shown
before to get

â∗ = 0.505, b̂∗ = 0.768

⇒ prior specification is suitable

Data: k = (k1 = 20, k2 = 2, k3 = 1, k4 = 7)T

k4 = 7 failures not detected within t∗3 = 4 hours
(burn-in time not adequate)

⇒ posterior: p|k ∼ Dir(101,15,6,8),

Wb(0.5,0.75) shifted to Wb(â∗ = 0.409, b̂∗ = 0.485)
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HPD region for Weibull parameters (a,b)
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