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Introduction

Semiconductor Manufacturing

involves > 100 process steps

silicon ingot→ slicing into sections
↓

flattening steps
(lapping, polishing, cleaning, ...)

↙ ↘
front-end processes back-end processes

↘ ↙
Final Chip

Jürgen Pilz (AAU Klagenfurt) LMU Munich March 20, 2019 2 / 55



Introduction

Key issue in semiconductor manufacturing:

Reliability

especially in safety-critical applications
Burn-in-study: most commonly applied failure screening technique.

Basis: bathtub curve describing hazard rate
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Introduction
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Introduction

Testing under accelerated stress conditions (increased temperature &
voltage stress)

Burn-in: independently selected number of devices is investigated for
early failures

Model for early failures: Weibull distribution Wb(a,b),b < 1.

Current ppm-requirement: 21ppm (Infineon)

Burn-in schemes different for logic and power devices. Here we focus
on power devices.

Reasons for early failure: oxide particles, metallization defects.
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Introduction

Problem: only very few failures

⇒ it’s impossible to efficiently fit a Weibull DFR distribution to burn-in
data.

Way out: prove that early life failure probability p ∈ target confidence
area

Burn-in read-outs at discrete time points t1, t2, t3

Report statistics: kj = # failures in (tj−1, tj ]

j = 1,2,3; t0 = 0
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Introduction

Goal: P (early life failure after t3 hours) ≤ 21ppm

Successful burn-in where k = k1 + k2 + k3 = 0

(zero defect strategy)

Usually: Burn-in is re-started whenever a failure occurs

Current standard: introduction of countermeasures (CM) (ink out,
design measures, optical inspection, ...) to reduce the failure
probability p

Crucial: assessment of effectiveness of CM by experts.
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Introduction

Our aim:
development of a statistical model for taking account of CM’s
avoid re-start of burn-in by planning additional number of items to
be burnt for zero defects.
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Interval estimation for early life failure probabilities

n independently selected devices are stressed

Xi =

{
0 if device i passes the burn-in
1 if device i fails within burn-in

X =
n∑

i=1

Xi ∼ Bi(n,p)

x = (x1, . . . , xn) ∈ {0,1}n; k = xT x ∈ {0,1, . . . ,n}

failures
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Clopper-Pearson interval estimation

ICP = (p̂l , p̂u) where

P(X ≥ k |p̂l) = α/2 and

P(X ≤ k |p̂u) = α/2

To obtain p̂l and p̂u, we use the well-known relationship with the Beta
distribution

p̂l = F−1
Zl

(α/2) with Zl ∼ Be(k ,n − k + 1)

p̂u = F−1
Zu

(1− α/2) with Zu ∼ Be(k + 1,n − k)

90% one-sided interval Ip = [0, p̂u]; α = 0.1
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Bayesian equal-tail interval for p

In a Bayesian framework, this relationship comes in naturally
observing that the conjugate prior for p is the Beta distribution:

p ∼ Be(a,b); a,b > 0

⇒ f (p|x) ∝ l(p; x)f (p) = pa+k−1(1− p)b+n−k−1

i.e. p|x ∼ Be(a∗ = a + k ,b∗ = b + n − k)
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Bayesian equal-tail interval for p

Bayesian equal-tail credible interval

Ce = (p̂∗l , p̂
∗
u) where p̂∗l = F−1

p|x (α/2), p̂∗u = F−1
p|x (1− α/2)

Jeffreys’ prior: a = b = 1/2

Choosing a = 1,b = 0 we have

p|x = Be(k + 1,n − k)

p̂∗u = p̂u

coincidence of one-sided Bayesian interval with Clopper-Pearson
interval
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Assessing ppm-levels using CM’s

Repair is impossible for semiconductor devices; they either pass or fail
within the burn-in. If a burn-in related failure occurs, then a CM is
introduced (optical inspection, process improvement, ...) aiming to
reduce p to π ≤ p.

Experts assess the CM’s effectiveness ϑ ∈ [0,1] = probability for
correcting the failure.
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Single CM failure probability model

Consider k failures for which a single CM with effectiveness ϑ ∈ [0,1]
is implemented in the process

Interpretation: There is a likelihood ξj that j ≤ k failures would have
occured or, equiv., k − j failures would have been solved (corrected) if
the CM would have already been introduced before the burn-in study.

Let Kl =

{
1 failure l solved
0 else

Clearly: K =
k∑

l=1
Kl ∼ Bi(k , ϑ)

↓
unknown number of failures that would have been caught by the CM

⇒ (∗)ξj = P(K = k − j); j ∈ {0, . . . , k}
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Clopper-Pearson model for single CM

after the CM: X ′ ∼ Bi(n, π)

Weighting of Clopper-Pearson upper limits according to (∗) leads to
assessing π̂ as

k∑
j=0

ξjP(X ′ ≤ j |π̂) = α

Equivalently: using P(X ′ ≤ j |π) = 1− P(Zj < π)

with Zj ∼ Be(j + 1,n − j); j = 0, . . . , k

⇒ π̂ = F−1
Z ′

(1− α) quantile of

Z
′ ∼

k∑
j=0

ξjBe(j + 1,n − j) Beta mixture
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Multiple CM failure model

now consider r ≥ 1 different CM’s and denote ϑ = (ϑ1, . . . , ϑr ) =
vector of effectivenesses; r ≤ k

k = (k1 . . . , kr ); ki = # failures tackled by CMi

with
r∑

i=1
ki = k

Now: K =
k∑

l=1
Kl ∼ GBi(k ,ϑk ) generalized binomial, where

ϑk = (ϑ1, . . . , ϑ1︸ ︷︷ ︸
k1 times

, ϑ2, . . . , ϑ2︸ ︷︷ ︸
k2 times

, . . . , ϑr , . . . , ϑr︸ ︷︷ ︸
kr times

)

We have developed an efficient method for computing generalized
binomial probabilities employing sequential convolution.
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CM’s with uncertain effectivenesses

So far: ϑi ; i = 1, . . . , r ; were fixed

often: process experts are uncertain about the effectivenesses of the
applied CM’s.

a) Beta-Binomial model for a single uncertain effectiveness, r = 1

ϑ ∼ Be(u, v)

K |ϑ ∼ Bi(k , ϑ)

⇒ ξj = P(K = k − j) =
1∫
0

P(K = k − j |ϑ)f (ϑ)dϑ

=

(
k

k − j

)
Γ(u+k−j)Γ(v+j)

Γ(u+k+v)
Γ(u+v)

Γ(u)Γ(v)

K ∼ BeBi(k ,u, v) Beta-Binomial
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CM’s with uncertain effectivenesses

b) Generalized Beta-Binomial model for more than a single uncertain
effectiveness
K |ϑ ∼ GBi(k ,ϑk )

ϑi ∼ Be(ui , vi); i = 1, . . . , r

⇒ P(K = k − j) =
∫

[0,1]r
P(K = k − j |ϑ)f (ϑ)dϑ

K ∼ GBeBi(k ,u1, . . . ,ur , v1, . . . , vr , k1, . . . , kr ) no closed form
solution, MC-integration
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Rationale:

Take n∗ < n (even n∗ � n) additional devices and prove that the target
ppm−level is still guaranteed on the basis of the CM failure probability
model

Efficiency of the new approach: illustration for single CM case
(different degrees of effectiveness) and k = 1,2,3.

Significant reduction of n∗ in case of high CM effectiveness!
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Rationale:

Required inspections in addition to n = 110000 for reaching target
p ≤ 21 ppm at 90% CL with implemented CM(s) and k = 3,2,1 fails.
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Bayesian assessment of Weibull early life failure
distributions

Burn-in settings (read-outs, burn-in time, ...) are typically assessed
using a Weibull DFR distribution Wb(a,b) with

scale a > 0 and shape b ∈ (0,1)

crucial point: joint prior p(a,b)

There is no continuous conjugate joint prior
Conjugate continuous-discrete joint prior:
Gamma dist. for a, categorical distr. for b
(Soland 1969)
Jeffreys’ prior: pJ(a,b) ∝ 1/ab
(Sinha 1986)
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Bayesian assessment of Weibull early life failure
distributions

We propose two alternatives:
Histogram prior (remains still challenging)
Dirichlet prior

Let T ∼Wb(a,b) with density

f (t |a,b) ∝


tb−1 exp(−( t

a )b) t > 0

0 else

with a > 0,0 < b < 1

Burn-in read outs at fixed time points t∗1 , . . . , t
∗
m > 0
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Example

Data: k = (k1 = 20, k2 = 2, k3 = 1, k4 = 7)T

k4 = 7 failures not detected within t∗3 = 4 hours (burn-in time not
adequate)

⇒ posterior: p|k ∼ Dir(101,15,6,8)

and Wb(0.5,0.75) shifted to Wb(â∗ = 0.409, b̂∗ = 0.485)
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Example
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Part II: Gaussian Process Regression

Stress testing in semiconductor processing for thin wafers
(thickness≤ 40µm)
Kriging metamodel for stress prediction validated against Ramann
spectroscopy measurements, FEM simulations
+ Modelling of electrical parameters (signals)
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Part II: Gaussian Process Regression

Experiments
physical experiments
Computer experiments (Computer-based simulations like FEM)

Which simulations to run?
Main difference: Computer Models are deterministic
Modification of classical DOE⇒ DOCE

Math. model: y = f̃ (x1 . . . , xk ), e.g. solution of ODE/PDE system

x = (x1, . . . , xk )T ∈ X = experimental domain

replaced by meta-model

EY (x) = f (x1, . . . , xk ), f "close" to f̃
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Part II: Gaussian Process Regression

Requirements for good designs:
space filling property
projective property
computational efficiency

Compromise: LHD= Latin Hypercube Designs

w.l.o.g. experimental domain X = [0,1]k

Designs: dn = (x1, . . . ,xn) ∈ X n,

n runs, k factors
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Part II: Gaussian Process Regression

Figure: Regular (left) and latin hypercube design (right)
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Part II: Gaussian Process Regression

Figure: Maximin (left) and Minimax (right) designs
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Part II: Gaussian Process Regression
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Part II: Gaussian Process Regression

Jürgen Pilz (AAU Klagenfurt) LMU Munich March 20, 2019 31 / 55



RSM modelling

Classical approach: Regression (response surface) modelling⇒

prediction reduces to interpolation problem

e.g. quadratic RSM

y(x) = β0 +
k∑

i=1
βiix2

i +
k∑

i<j

k∑
j=1

βijxixj

For complex responses, LSE β̂ = (X T X )−1X T yd

yields bad interpolations
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Remedy

Kriging models

⇒ response = realization of stochastic process

Y (x) = µ(x)︸︷︷︸+ Z (x)︸ ︷︷ ︸
trend Gaussian Process

(zero mean)

Effect: good approx. over a wide range of different designs and
sample sizes and well-defined basis for statistical framework

Y (·) ∼ GP(µ(x), σ2R(·, ·))

Main difference to geostatistical settings:
– x is no spatial coordinate vector
– usually, higher dimensional settings: K > 3
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Covariance structure

covariance function: Cov(Z (xi),Z (xj)) = σ2 R(xi ,xj)︸ ︷︷ ︸
correlation function

↓
process variance

Common assumptions:
1 covariance-stationarity, i.e.

R(xi ,xj) = R(xi − xj)

2 (tensor-)product correlation structure

R(xi ,xj) =
k∏

m=1

Rm(|xim − xjm|)︸ ︷︷ ︸
univariate Matérn c.f.
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Matérn c.f. ν = 5
2

R(d) =
(

1− τ2

σ2

)
∗
(

1 +
√

5d
θ + 5d2

3θ2

)
exp

(
−
√

5d
θ

)
, d > 0
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Estimation and Prediction

MLE: available for β and σ2

β̂ = (X T R−1
n (θ)X )−1X T R−1

n (θ)yd

σ̂2 = 1
n (yd − X β̂)T R−1

n (θ)(yd − X β̂)

θ̂ = (θ̂1, . . . , θ̂k )T Gauss-Newton (or genetic optimiz.)

Optimal prediction:

Ŷ (x∗) = f(x∗)T β̂ + rT
0 R−1

n (yd − X β̂)
= GLSE + smoothed residual

where rT
0 = (R(x0 − x1), . . . ,R(x0 − xn)),Rn = correl. matrix

Implementation in R: DiceKriging
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Robust Additive Gaussian Processes

Aims
higher flexibility in meta-modelling
numerical stability: robustness of parameter estimates, esp. for
correlation parameters

Solution: Bayesian approach using additive models and (objective)
reference priors

Side effect: high-dimensional optimization problems reduced to a few
sub-routines of ≤ 3 dimensions

Additive model:

EY (x) = f0 +
k∑

i=1
fi(xi) +

∑
i<j

fij(xi , xj) + . . .+ f12...k (x1,..., xk )

Functional ANOVA Representation
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Robust Additive Gaussian Processes

Special case: first order GAM

EY (x1, . . . , xk ) = f0 +
k∑

i=1

fi(xi)

f1, ..., fk : smooth basis functions

⇒ non-parametric modelling of main effects

Goal: Extension of classical GAM regression

Fo a good overview of the advantages of additive structures
compared to fully parametric GP models in high dimensions
see Dourante, Ginsbourger, Roustant (2012)
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Robust Additive Gaussian Processes

Novelty of our recently proposed concept: Combination of AGP with
robust reference priors proposed by Gu, Wang and Berger (submitted
to AS 2017) + new sampling design scheme

Our new model: Second order Kriging AGP with

fi ∼ N(µi , σ
2Ri)

fij ∼ N(µij , σ
2RiRj)

Result: AGP Y (x) ∼ N(µ, σ2R(·, ·)), locally constant trend

and R(x,x′) =
k∑

i=1
Ri(xi , x

′

i ) +
k∑

i=1

k∑
j=i+1

Ri(xi , x
′

i )Rj(xj , x
′

j ) + δxx′ τ
2
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Robust Additive Gaussian Processes

Renormalization such that

f ∗ := 1√
m f ∼ N

(
1√
mµ, σ

2R∗
)

R∗ := 1
m R valid correlation matrix, m = # correlation components

Each component function has parameters
Θi = (µ, σ2, θi , τ

2
i ) for 1st order terms

Θij = (µ, σ2, θi , θj , τ
2
ij ) for 2nd order terms

Profile likelihood approach often fails, results in estimates θ̂ for which

(∗) R ≈ In or R ≈ 1n1n
T

(θ̂ ≈ 0) singular corr.m.
↓

bad ("impulse”) prediction
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Robust Additive Gaussian Processes

Remedy: robust Bayes prediction using reference priors of the form

πR(µ, σ2, θ∗) = πR(θ∗)
σ2

↓
correl. parameters

where πR(θ∗) ∝ (det IF (θ∗))1/2

↓
exp. Fisher information

Explicit representations for IF (θ∗) available in Kazianka & Pilz (2012)

Result: proper posteriors p(θ∗|yd )

Simplified estimate: θ̂∗ = arg max
θ∗

p(θ∗|yd )

posterior mode (to avoid MCMC)
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Bayes Prediction

Bayes predictor of Y (x0) for untried input x0 is based on the predictive
distribution

p(Y0|yd ) =

∫
p(Y0|yd , θ

∗)︸ ︷︷ ︸
Student−t

p(θ∗|yd )dθ∗

Simplification: Use plug-in predictor

µ∗ := E(Y0|yd , θ̂
∗)

= µ̂+ rT
0 R−1

θ̂∗
(yd − µ̂1n)

where µ̂ = (1n
T R−1

θ̂∗
1n)−11n

T R−1
θ̂∗

yd GLSE

R-implementation fully described in Vollert, Ortner & Pilz (2019) is
based on an iterative estimation scheme, using reparametrizations

Note: increasing nugget with increasing dimension k of input space
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Sampling design

Due to additive structure, space-filling is important (for all variable
projections)

Need compromise between LHD and regular grid designs: Cut-FD
combines HDMR Designs based on a cut-center with Factorial Designs

⇒ n0 = 2k + 2k boundary points +1 cut-point

< 10 · k = n∗ (recommended min.size for DOCE)

whenever k ≤ 5

Add (n∗ − n0) points along (ij)-planes of cut point xc

For k > 5 we recommend to use Fractional Factorial Designs instead
of Full Factorials.
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Example

3 commonly used test functions

Pepelyshev function: xi ∈ [0,1]; i = 1,2,3

f1(x) = 4(x1 − 2 + 8x2 − 8x2
2 )2 + (3− 4x2)2 + 16

√
x3 + 1(2x3 − 1)2

n1 = 31 samples

Park function: xi ∈ [0,1]; i = 1, . . . ,4

f2(x) = 2
3 exp(x1 + x2)− x4 sin(x3) + x3

n2 = 41 samples

Friedman function: xi ∈ [0,1]; i = 1, . . . ,5

f3(x) = 10 sin(x1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5

n3 = 47 samples
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Example
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Figure: Initial size n = 43 points (one cut-point in the centre). Four points
(red) added when the interaction f12 enters the model (final size n = 47)
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Implementation

All calculations in R,
lhs package for constructing a maximin LHD,
DiceKriging package for constructing GP models

Setup:
Matérn correlation with ν = 5/2 for all components
comparison for 3 designs: random LHD, maximin LHD and Cut-FD

Criterion for comparisons: MAPE = mean absolute prediction error,
measured (in %) at 25000 positions (generated by 50 random designs
each containing 500 points)
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Results

1 Cut-FD can better determine the actual structure of the test
functions than maximin and other LHDs (found exact set of
components for Pepelyshev and Friedman functions, maximin did
not)

2 Maximin LHD design was best with regard to MAPE (pred. power):
For 5D-Friedman function MAPE < 4% (based on only n3 = 47
sample points!)

3 Robust AGP model outperforms commonly used GP models for
all three test functions

4 Simple random LHDs are least appropriate for approximation,
getting even worse with increasing dimension
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Results
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Work in progress:

AGP modelling for real DOCE applications based on FEMs for
geometric and material parameter optimization problems, e.g.
Magnetic field shaping for position and orientation detection systems

a) b)
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Model Performance based on random LHD

Component functions chosen by our algorithm:
– for Bx : fs, fb, fcs, fas
– for Bz : fs, fa, fb, fc , fas, fbM , fab, fbs, fcs
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Current and Future Work with Infineon

HORIZON 2020 & ECSEL Joint Undertaking Project „iDev40“:
Integrated Development 4.0 for Semiconductor Manufacturing

Project start: May 2018, End date: April 2021
Our project part will focus on Statistical Root-Cause Failure Analysis
and Advanced Statistical and Bayesian Deep Learning Methodology.
The project includes industrial partners Infineon
Austria/Germany/Rom., AVL, ELMOS, Yazzoom, ETC, IBERMATICA,
. . . and quite a few European university research partners
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Current and Future Work with Infineon

Spatiotemporal Random Field Modeling and Bayesian Deep Learning
Methods for Signal/Image Processing of wafer maps

Extension of AGP to Nearest Neighbour AGP
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