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I. Introduction

Over the last decade, many conferences under the heading of
"Machine Learning/Deep Learning", "Data Science", "Data
Analysis/Analytics", "Big Data", but much fewer with joint theme
"Statistics and Data Science", "Statistics and Data Analytics", and
still fewer with sole theme "(Applied) Statistics".

Good message: Joint theme conferences (research monographs,
textbooks, ....) and university curricula of Data Science study programs
incl. sound education in statistics are gaining ground!

Main Drivers of recent developments/ trends have been
Availability of massive data sets
Modern Computer Technology and Computing Environments

Essential role of Probability Theory, Information Theory and Statistics
is getting more and more acknowledged! But, we need to double our
efforts to propagate the underlying probabilistic and statistical basis of
Data Science and and our contributions to it!
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Introduction

“Statistics is the grammar of science.” Karl Pearson (1892)
“Those who ignore statistics are condemned to reinvent it. Statistics is
the science of learning from experience.” Bradley Efron (2006)
“Data can tell lies. – Big Data can tell bigger lies. – The big thing for
small data is random error. – The big thing for big data is bias.”
Chris Wild (2017)

Fundamental ideas in statistics: uncertainty and variation.
Two of these key developments over the last decades are
bootstrapping (Bradley Efron, 1979) and Monte Carlo Markov Chain
(MCMC, Gelfand and Smith 1990) methods, which make it possible to
compute large hierarchical models, e.g. in Bayesian statistics,
computational physics and chemistry, computational biology and
linguistics, etc.

The widespread use of such powerful computational tools would have
been impossible without the emergence of the statistical programming
language R (released in 1993)
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Introduction

Creative Task of Statisticians: Data Modelling
Note: "All models are wrong, but some of them are useful"
(George E.P. Box 1978)

Looking into Data Science/ML books: Regression and Classification
(Models) dominate the contents

Basically, the underlying concept for both is the same:

Conditional Expectation E[Y |x1, . . . , xk ] = f (x1, . . . , xk )

Continuous Y : Regression case
Discrete (multinomial) Y : Classification case

In this talk: deal with both central topics

Regression: Linear regression ... Gen. linear (mixed) regression
... Additive regression ... Gaussian Process regression

Classification: Clustering ... Bayes Deep Learning
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II. Gaussian Process Regression

Start with specific application:
Stress testing in semiconductor processing for thin wafers
(thickness≤ 40µm)
Kriging metamodel for stress prediction validated against Ramann
spectroscopy measurements, FEM simulations
+ Modelling of electrical parameters (signals)

Jürgen Pilz (AAU Klagenfurt) NUST Islamabad Sept 22, 2022 5 / 64



Gaussian Process Regression

Experiments
physical experiments
Computer experiments (Computer-based simulations like FEM)

Which simulations to run?
Main difference: Computer Models are deterministic
Modification of classical DOE ⇒ DOCE

Math. model: y = f̃ (x1 . . . , xk ), e.g. solution of ODE/PDE system

x = (x1, . . . , xk )
T ∈ X = experimental domain

replaced by meta-model

EY (x) = f (x1, . . . , xk ), f "close" to f̃
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Gaussian Process Regression

Requirements for good designs:
space filling property
projective property
computational efficiency

Compromise: LHD= Latin Hypercube Designs

w.l.o.g. experimental domain X = [0,1]k

Designs: dn = (x1, . . . ,xn) ∈ X n,

n runs, k factors
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Gaussian Process Regression

Regular (left) and latin hypercube design (right)
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Gaussian Process Regression

Fig.. Maximin (left) and Minimax (right) designs
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Gaussian Process Regression
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Gaussian Process Regression
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RSM modelling

Classical approach: Regression (response surface) modelling ⇒

prediction reduces to interpolation problem

e.g. quadratic RSM

y(x) = β0 +
k∑

i=1
βixi +

k∑
i=1

βiix2
i +

k∑
i<j

k∑
j=1

βijxixj

For complex responses, LSE β̂ = (X T X )−1X T yd

yields bad interpolations
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Remedy

Kriging models

⇒ response = realization of stochastic process

Y (x) = µ(x)︸︷︷︸+Z (x)︸ ︷︷ ︸
trend Gaussian Process

(zero mean)

Effect: good approx. over a wide range of different designs and
sample sizes and well-defined basis for statistical framework

Y (·) ∼ GP(µ(x), σ2R(·, ·))

Main difference to geostatistical settings:
– x is no spatial coordinate vector
– usually, higher dimensional settings: K > 3
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Covariance structure

covariance function: Cov(Z (xi),Z (xj)) = σ2 R(xi ,xj)︸ ︷︷ ︸
correlation function

↓
process variance

Common assumptions:
1 covariance-stationarity, i.e.

R(xi ,xj) = R(xi − xj)

2 (tensor-)product correlation structure

R(xi ,xj) =
k∏

m=1

Rm(|xim − xjm|)︸ ︷︷ ︸
univariate Matérn c.f.
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Matérn c.f. ν = 5
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Estimation and Prediction

MLE: available for β and σ2

β̂ = (X T R−1
n (θ)X )−1X T R−1

n (θ)yd

σ̂2 = 1
n (yd − X β̂)T R−1

n (θ)(yd − X β̂)

θ̂ = (θ̂1, . . . , θ̂k )
T Gauss-Newton (or genetic optimiz.)

Optimal prediction:

Ŷ (x∗) = f(x∗)T β̂ + rT
0 R−1

n (yd − X β̂)
= GLSE + smoothed residual

where rT
0 = (R(x0 − x1), . . . ,R(x0 − xn)),Rn = correl. matrix

Implementation in R: DiceKriging
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Robust Additive Gaussian Processes

Aims
higher flexibility in meta-modelling
numerical stability: robustness of parameter estimates, esp. for
correlation parameters

Solution: Bayesian approach using additive models and (objective)
reference priors

Side effect: high-dimensional optimization problems reduced to a few
sub-routines of ≤ 3 dimensions

Additive model:

EY (x) = f0 +
k∑

i=1
fi(xi) +

∑
i<j

fij(xi , xj) + . . .+ f12...k (x1,..., xk )

Functional ANOVA Representation
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Robust Additive Gaussian Processes

Special case: first order GAM

EY (x1, . . . , xk ) = f0 +
k∑

i=1

fi(xi)

f1, ..., fk : smooth basis functions

⇒ non-parametric modelling of main effects

Goal: Extension of classical GAM regression

Fo a good overview of the advantages of additive structures
compared to fully parametric GP models in high dimensions
see Dourante, Ginsbourger, Roustant (2012)
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Robust Additive Gaussian Processes

Novelty of our recently proposed concept: Combination of AGP with
robust reference priors proposed by Gu, Wang and Berger (AS 2018)
+ new sampling design scheme

Our new model: Second order Kriging AGP with

fi ∼ N(µi , σ
2Ri)

fij ∼ N(µij , σ
2RiRj)

Result: AGP Y (x) ∼ N(µ, σ2R(·, ·)), locally constant trend

and R(x,x′
) =

k∑
i=1

Ri(xi , x
′

i ) +
k∑

i=1

k∑
j=i+1

Ri(xi , x
′

i )Rj(xj , x
′

j ) + δxx′ τ2
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Robust Additive Gaussian Processes

Profile likelihood approach often fails!
Remedy: robust Bayes prediction using reference priors of the form

πR(µ, σ2, θ∗) = πR(θ∗)
σ2

↓
correl. parameters

where πR(θ∗) ∝ (det IF (θ∗))1/2

↓
exp. Fisher information

Explicit representations for IF (θ∗) available in Kazianka & Pilz (2012)

Result: proper posteriors p(θ∗|yd)

Simplified estimate: θ̂∗ = arg max
θ∗

p(θ∗|yd)

posterior mode (to avoid MCMC)
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Bayes Prediction

Bayes predictor of Y (x0) for untried input x0 is based on the predictive
distribution

p(Y0|yd) =

∫
p(Y0|yd , θ

∗)︸ ︷︷ ︸
Student−t

p(θ∗|yd)dθ∗

R-implementation fully described in
Vollert, Ortner & Pilz (2019): Robust Additive Gaussian Process
Models Using Reference Priors and Cut-Off-Designs, J. Applied
Mathematical Modelling 65 (2019), 586-596

As a test function we used, among others:
Friedman function: xi ∈ [0,1]; i = 1, . . . ,5

f3(x) = 10 sin(x1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5

n3 = 47 samples
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Results

1 Cut-FD can better determine the actual structure of the test
functions than maximin and other LHDs (found exact set of
components for Pepelyshev and Friedman functions, maximin did
not)

2 Maximin LHD design was best with regard to MAPE (pred. power):
For 5D-Friedman function MAPE < 4% (based on only n3 = 47
sample points!)

3 Robust AGP model outperforms commonly used GP models for
all three test functions

4 Simple random LHDs are least appropriate for approximation,
getting even worse with increasing dimension
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Results
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Automotive Application

AGP modelling for real DOCE applications based on FEMs for
geometric and material parameter optimization problems, e.g.
Magnetic field shaping for position and orientation detection systems
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III. Multiple Linear Regression

Still the most widely used Regression model type
Focus here: variable selection for models with large number of
regressors
Posch, Arbeiter and Pilz: A novel Bayesian approach for variable
selection in linear regression models. CSDA 144 (2020)

y = Xβ + ε

Among the well-known recent approaches to variable selection the
most popular one is lasso, proposed by Tibshirani (1996), with penalty
P(β, λ) := λ||β||1 = λ

∑p
i=1 |βi |.

Shrinkage effect!
The lasso can be viewed as a convex, more efficiently solvable
reformulation of the best subset selection approach with penalty
P(β, λ) := λ||β||0 = λ#(i |βi ̸= 0)
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Bayesian lasso

lasso estimate for β can be interpreted as a Bayesian posterior mode
estimate when independent Laplace priors all with zero mean and the
same scale parameter λ > 0 are assigned to the coefficients:

p(β|σ2) =

p∏
i=1

λ

2σ
e−λ

|βi |
σ

A further generalization is the adaptive lasso (Zou2006), which allows
for different penalization factors of the regression coefficients:

P(β,λ) :=

p∑
i=1

λi |βi |.

The Bayesian adaptive lasso generalizes the non-adaptive Bayesian
lasso by allowing different scale parameters in the Laplace priors:

p(β|σ2) =

p∏
i=1

λi

2σ
e−λi

|βi |
σ .
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Shrinkage control

Another generalization of classical lasso: elastic net, Hastie (2005),
with penalty function given by:

P(β,λ) := λ1||β||1 + λ2||β||22.

This encourages a grouping of strongly correlated predictors. It works
better than the classical lasso when p ≫ n. Bayesian versions of the
elastic net include Huang (2015). We used their R-package EBglmnet
to validate our novel method.
Also: Bayesian penalized regression techniques not directly related to
the lasso e.g. the horseshoe estimator, see Makalic (2016)

βj |λj , τ, σ
2 ∼ N (0, λ2

j τ
2σ2),

λj ∼ C+(0,1),
τ ∼ C+(0,1)

τ controls amount of overall shrinkage of β, while λ1, ..., λp allow for
individual adaptions on the degree of shrinkage.
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Random indicator approach

Zhang 2018 proposed Dirichlet-Laplace (DL) shrinkage priors, leading
to optimal posterior concentration:

βj |ϕj , τ, σ
2 ∼ La(ϕjτσ),

(ϕ1, ..., ϕp)
T ∼ Dir(a, ...,a),

τ ∼ Ga

(
pa,

1
2

)
,

Small values of concentration parameter a guarantee that only some of
the components of ϕ = (ϕ1, ..., ϕp)

T are nonzero.

Besides: Bayesian methods using a random indicator vector
γ = (γ1, ..., γp)

T ∈ {0,1}p gain increasing popularity, see Wang (2015).

γi = 0 ⇒ i-th predictor does not explain the target y .

Common choice: independent Bernoulli priors for indicator variables:
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Spike and slab

These Bayesian methods belong to the so-called spike and slab
approaches: use mixture priors, with a spike concentrated around zero
and a comparably flat slab, to perform variable selection.

Note: spike and slab priors are also applied apart from classical
regression approaches. E.g. Polson (2011) used this type of priors to
regularize support vector machines.

In our recent paper Posch, Arbeiter and Pilz (2020): setting is based
on a random set A ⊆ {1, ...,p} that holds the indices of the active
predictors, i.e. the predictors with coefficients different from zero.
We assign a prior to A which depends on the cardinality of the set |A|
as well as on the actual elements of A:

p(A = {α1, ..., αk}) ∝ (pα1 + ...+ pαk )
1
k p̃(k)

where p̃ is our a priori belief in the model size and

{pα1 , ...,pαk} ⊆ {p1, ...,pp} with
∑p

i=1 pi = 1 and pi ≥ 0 for i = 1, ...,p
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Zellner shrinkage

Special case: equal a priori importance of the predictors
1
p = p1 = ... = pp ⇒ prior reduces to

p(A = {α1, ..., αk}) ∝ p̃(k)

For the variance σ2 of the error terms ε1, ..., εn an inverse gamma prior
is chosen:

p(σ2) ∝ (σ2)−(a+1) exp

(
− b
σ2

)
.

For given A the vector of nonzero coefficients βA is commonly
assigned a conventional Zellner g-prior

βA|g, σ2,XA ∼ N (0,gσ2(XT
AXA)

−1)

where XA = submatrix of X consisting of all columns corresponding to
predictors with index in A.
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Penalized Zellner g-prior

However, to overcome problems with singularity of XT
AXA for k > n, we

consider a ridge penalized version of the g-prior:

βA|g, σ2,XA ∼ N (0, (g−1σ−2XT
AXA + λIk )−1),

with small λ > 0 and complete hierarchical representation

p(A = {α1, ..., αk}) ∝ (pα1 + ...+ pαk )
1
k

p̃(k),

g ∼ IG
(

1
2
,
n
2

)
,

σ2 ∼ IG (a,b)

Our main result: above model specifications are consistent in terms
of model selection:

p lim
n→∞

p(MA|y,X) = 1 and p lim
n→∞

p(MA′ |y,X) = 0 for all A′ ̸= A,

i.e. the true model will be selected provided that enough data is
available.
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MH algorithm

Implementation: special Metropolis-Hastings (MH) algorithm is
proposed to simulate from

p(β,A,g, σ2|y,X).

Have to define transitions
q(α|At),q(At+1|At , ch = 1),q(At+1|At , ch = 0) ⇒ q(At+1|At).

Natural choice for proposal distribution of βt+1|At+1,gt+1, σ
2
t+1,XAt+1 is

normal with mean and precision matrix given by

µt+1 = σ−2
t+1F−1

t+1XT
At+1

y,

Ft+1 = σ−2
t+1XT

At+1
XAt+1 + σ−2

t+1g−1
t+1XT

At+1
XAt+1 + λIkt+1
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Iterative simulation

Finally, the overall proposal distribution can be written as

q(βt+1,At+1,gt+1, σ
2
t+1|At ,gt , σ

2
t ,X)

= q(βt+1|At+1,gt+1, σ
2
t+1,XAt+1)q(At+1|At)q(σ2

t+1|σ2
t )q(gt+1|gt)

One can easily simulate from the overall proposal by iteratively
simulating from the factors, from right to left and conditioning on the
values sampled up to the current step of execution.

Our MH algorithm converges comparatively fast.

Accuracy measures for comparison with other methods:

MSE =
1

nte

nte∑
i=1

(yi − ŷi)
2, MAD =

1
nte

nte∑
i=1

|yi − ŷi |

where nte = cardinality of test dataset and ŷi = predicted target values
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Comparison with competitors

For obtaining a prediction ŷ∗ corresponding to a test sample x∗, an
estimate of the expected value of the posterior predictive distribution
E(y∗|x∗,y,X) is used. Using MC -integration this expected value can
be estimated as follows:

E(y∗|x∗,y,X) =≈ 1
N

N∑
i=1

x∗Tβi

For the Bayesian comparison models the way the predictions are
computed depend on the output provided by the R-packages:

R-function blasso in package monomvn for B. Lasso
R-function brq in package Brq for B. ad. Lasso
R-function EBglmnet in package EBglmnet for B. el. net
horseshoe and bayesreg for horseshoe and horseshoe+, resp.
EMVS and varbvs for spike and slab via EM and VI, resp.
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Data sets

Real-world studies: The diabetes data set (Efron 2004), see
R-package care
Predictors: age, sex, body mass index, average blood pressure, and
six blood serum measurements, measured from n = 442 diabetes
patients.
Target variable: quantitative measure of disease progression one year
after baseline.
Burn-in: 10,000 samples are deleted, Thinning: every 10-th one is
deleted.
For each of the observed Bayesian models 50,000 (dependent)
samples are generated, except for the Bayesian adaptive lasso where
70,000 ones are produced. This results in 4,000 i.i.d. samples each,
except of 6,000 samples for the adaptive lasso. Performing a 5-fold
cross-validation, the proposed approach achieves the lowest MMSE as
well as the lowest MMAD and thus performs better than all methods
under comparison.
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MMSE and MMAD

Method MMSE MMAD

Our approach 0.4873534 0.5678801
Lasso 0.492067 0.571596
Adaptive lasso 0.4939229 0.5736721
Elastic net 0.4922686 0.5706994
Bayesian lasso 0.4924316 0.5736084
Bayesian adaptive lasso 0.4997307 0.5786672
Bayesian elastic net 0.4895844 0.5727555
Horseshoe 0.4903684 0.5711527
Horseshoe+ 0.4919946 0.5727804
Spike and slab (VI) 0.5179594 0.5894747
Spike and slab (EM) 0.4893634 0.568348
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Simulated Data studies

Simulated data corresponding to two different artificial models, on
purpose including many correlated predictors, from which only a small
subset is predictive.
⇒ Difficult variable selection problems

From both artificial models 100 datasets are simulated
Sampling with n = 50, n = 100 and n = 200 training observations.
The number of test observations is always the same: nte = 200.

y = β1x1 + ...+ β100x100 + ε, ε ∼ N (0,1)

(x1, ..., x100)
T ∼ N (0,Σ)

diag(Σ) = 1, Σi,j = 0.6 for i ̸= j

with (β2, β11, β21, β51, β71, β81) = (−2.5,−2,−1.5,1.5,2,2.5)/
√

3 and
the remaining coefficients equal to zero.

Model is inspired by those used to evaluate the performance of the
spike-and-slab lasso in Ročková and George (2018).
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Performance comparison

Performance comparison for different specifications of n,
MMSE based on a 100 simulated datasets

Method MMSE MMSE MMSE
n = 50 n = 100 n = 200

Our approach 0.3619324 0.2496664 0.2405002
Lasso 0.4643155 0.3114765 0.2696669
Adaptive lasso 0.4261128 0.2869056 0.2653867
Elastic net 0.4681363 0.3193174 0.2727069
Bayesian lasso 0.6445547 0.3078518 0.2665262
Bayesian adaptive lasso 0.7616539 0.8052745 0.3911191
Bayesian elastic net 0.777284 0.3367692 0.273061
Horseshoe 0.4305569 0.2710609 0.2512771
Horseshoe+ 0.427505 0.2699478 0.2517378
Spike and slab (VI) 0.6992991 0.2563254 0.2462369
Spike and slab (EM) 0.4947604 0.4078821 0.3596638
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MAD - highly correlated predictors
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Fig.. Boxplots of the MADs obtained from 100 simulated datasets
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Posterior Model Inclusion
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Computing time

Model training computation time in seconds, for one train/test split

Method Diabetes Sim1 Sim2
n = 200 n = 200

Our approach 10.7 7.44 27.3
Lasso 0.10 0.13 0.57
Adaptive lasso 0.15 0.27 0.84
Elastic net 1.21 2.08 9.58
Bayesian lasso 1.84 16.0 116.
Bayesian adaptive lasso 87.2 236.
Bayesian elastic net 1.88 14.6 594.
Horseshoe 9.96 93.8 346.
Horseshoe+ 9.13 41.9 597.
Spike and slab (VI) 0.14 0.45 1.67
Spike and slab (EM) 0.01 0.01 0.05

Jürgen Pilz (AAU Klagenfurt) NUST Islamabad Sept 22, 2022 41 / 64



IV. Bayesian Deep Learning

Popularity of Deep Learning is increasing rapidly: excellent results in
many fields of applied machine learning, including computer vision and
natural language processing

Excellent overview in Goodfellow, Bengio and Courville:
Deep Learning. MIT Press 2016

Note: Deep NNs act as Gaussian Processes, see Lee et al. 2018

Bayesian DL overcomes drawbacks of classical DL:

Network parameters are treated as random variables
Uncertainty regarding parameters is directly translated into
uncertainty about predictions
Robustness to overfitting (built-in regularization)

We need, however, ABC methods to compute posteriors
Laplace approximation
Variational inference, usually with independent Gaussians

Note: Dropout regularization (Gal and Ghahramani 2015) acts like VI
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Measuring Uncertainty in Deep Neural Networks

Novel approach for training DNNs using Bayesian techniques
presented in
K. Posch and J. Pilz: Correlated Parameters to Accurately Measure
Uncertainty in Deep Neural Networks. IEEE Transactions on Neural
Networks and Learning Systems, Vol. 32 (2021) No. 3, 1037 - 1051

Our novelty comprises
variational distribution as product of multiple multivariate normals
with tridiagonal covariance matrices
correlations are assumed to be identical ⇒ only a few additional
parameters need to be optimized

Rationale: Dependent tridiagonal (instead of diagonal only)
Gaussians effect an exchange of information between NN layers and
neurons

Also, our approach allows an easy evaluation of model uncertainty and
is robust to overfitting
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Prediction uncertainty

Note: Variational Bayes is just a specific case of local α-divergence
minimization:
α-divergence between two densities p(w) and q(w) is given by

Dα(p(w)||q(w)) =
1

α(1 − α)

(
1 −

∫
p(w)αq(w)(1−α) dw

)
α-divergence converges for α → 0 to the Kullback-Leibler (KL)
divergence typically used in variational Bayes. We used a product of
tridiagonal Gaussians as variational density q(·). Moreover, note that

Prediction uncertainty = Epistemic (model) uncertainty
+ Aleatoric (observational) uncertainty

Let W denote the rv covering all parameters (weights and biases) of a
given neural net f. Further, let p(w) denote the prior regarding W.
According to the Bayes’s theorem the posterior distribution of W is
given by the density
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KL divergence

p(w|y,X) =
p(y|w,X)p(w)∫

p(y|w,X)p(w) dw

where X = {x1, ...,xβ} denotes a set of training examples and
y = (y1, ..., yβ)T holds the corresponding class labels.
Note that p(y|w,X) =

∏β
i=1 f(xi ;w)yi

The integral above is commonly intractable due to its high dimension
β. Variational inference aims at approximating the posterior with the
so-called variational density qϕ(w). The variational parameters ϕ are
optimized by minimizing the KL divergence

DKL(qϕ(w)||p(w|y,X)) = Eqϕ(w)

(
ln

qϕ(w)

p(w|y,X)

)
Since the posterior is unknown this divergence cannot be minimized
directly. However, minimization of DKL is equivalent to the minimization
of so-called
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ELBO

negative log evidence lower bound

LVI = −Eqϕ(w) [lnp(y|w,X)] + DKL(qϕ(w)||prior p(w))

Commonly, mini-batch gradient descent is used for optimization
To take account of the resulting reduction of the number of training
examples used in each iteration of the optimization, the rescaling is
necessary: in the k -th iteration we minimize

L̂VI = − 1
m

m∑
i=1

{
ln f(x̃i ;wk )ỹi

]
}+ 1

β
DKL(qϕ(w)||p(w))

where wk denotes a sample from qϕ(w), m is mini-batch size, and
x̃1, ..., x̃m, ỹ1, ..., ỹm denote the mini-batch itself. Summing up:

Frequentist deep learning penalizes (Euclidean) norm of w
Bayesian deep learning penalizes deviations of the variational
distribution from the prior.
Crucial difference: sampled network parameters.
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Posterior predictive distribution

In Bayesian deep learning predictions are based on the posterior
predictive distribution, i.e. the distribution of a class label y∗ for a given
example x∗ conditioned on the observed data y,X:

p(y∗|x∗,y,X) =

∫
p(y∗|w,x∗)p(w|y,X) dw

This distribution can be approximated via MC integration

p(y∗|x∗,y,X) ≈ 1
N

N∑
i=1

f(x∗;wi)y∗

where w1, ...,wN denote samples from qϕ(w)

Implementation of prior: In each layer j = 1, ...,d we sample from rvs

Wj = mj + LjXj with Xj ∼ N (0Kj , IKj )

and define the variational d. of Wj as multivariate normals

Wj ∼ N (mj ,Σj), Σj = LjLT
j
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Tridiagonal Gaussians

Choosing

Lj :=


aj1
cj1 aj2

cj2 aj3
. . . . . .

cj,Kj−1 ajKj


we end up with a tridiagonal cov. matrix Σj with equal correlations

To train a neural net f(·,w) we need the partial derivatives of the
approximation L̂VI with respect to all variational parameters.

In particular, the partial derivatives of the loss function L used in deep
learning and the partial derivatives of DKL(q||p) have to be computed.

Note: Loss function L = negative log likelihood of the data, i.e.
L = cross-entropy loss in case of classification and
L = Euclidean loss in case of regression.
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Implementation

We have implemented the proposed approach by modifying and
extending the popular open-source
Deep Learning framework Caffe (Jia et al. 2014). Up to now we have
not parallelized our code such that it can run on GPU.

The Pseudocode of our implementation is presented in our paper.
The code shows how a classical, i.e. frequentist, inner product, or
convolutional layer can be extended in order to fit with our
methodology.

Performance evaluation
Comparison includes the frequentist approach, the proposed approach
without correlations (see Steinbrener, Posch and Pilz 2020), and,
finally, the popular approach which applies dropout before every weight
layer in terms of a Bernoulli variational distribution (Gal and
Ghahramani 2015).

Criteria: prediction accuracy and quality of the uncertainty information
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MNIST benchmark

Benchmark datasets: MNIST (Deng 2012) and CIFAR-10
(Krizhevsky 2009)
training set: 60000 grayscale images of digits, test set: 10000 images
200 samples from corresp. variational distrib. per test image

TABLE
TEST ERRORS OF THE TRAINED MODELS

Model Neurons Test error

Frequentist 100 0.84%
Gauss cor. 100 0.70%
Gauss ind. 100 1.05%
Bernoulli 100 0.78%
Frequentist 250 0.70%
Gauss cor. 250 0.61%
Gauss ind. 250 1.00%
Bernoulli 250 0.78%
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Uncertainty evaluation

Evaluation of overall quality of uncertainty information based on two
measures: log-L and Brier score

TABLE
LOG-LIKELIHOOD AND BRIER SCORE OF THE TESTING DATASET

Model Neurons Log-likelihood Brier score

Gauss cor. 100 -251.7366 0.01128257
Gauss cor. 250 -220.9156 0.01041743
Gauss ind. 100 -377.5755 0.0160266
Gauss ind. 250 -336.4502 0.01522011
Bernoulli 100 -302.7554 0.01338242
Bernoulli 250 -270.3255 0.01253694

Jürgen Pilz (AAU Klagenfurt) NUST Islamabad Sept 22, 2022 51 / 64



3D Point Clouds

Modification: Bayes Deep Learning for 3D point cloud segmentation
Application in Automotive Industry, BMW Group Munich-Germany
Two recent publications in MDPI journals ”Entropy 2021" and
"Modelling 2021"
Joint work with my youngest PhD Christina Petschnigg

Fig.. BMW assembly line
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BMW Assembly Line
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Data recording

Classes: Car, Hanger, Floor, Band, Lineside, Wall, Column, Ceiling,
Clutter
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Thank you and all the best for the further growth of Statistics and Data
Science in Pakistan!

Please, also have a look at our most recent contributions to merging
ideas from Machine Learning and Bayesian Statistics:

Anna Jenul, Stefan Schrunner, Jürgen Pilz and Oliver Tomic:
A user-guided Bayesian framework for ensemble feature selection in
life science applications (UBayFS). Machine Learning, August 2022
https://doi.org/10.1007/s10994-022-06221-9

Konstantin Posch, Christian Truden, Philipp Hungerländer and Jürgen
Pilz: A Bayesian approach for predicting food and beverage sales in
staff canteens and restaurants. Int. Journal of Forecasting 38 (2022),
321-338
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