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I. Introduction

Over the last decade, many conferences under the heading of
"Machine Learning/Deep Learning", "Data Science", "Data
Analysis/Analytics", "Big Data", but much fewer with joint theme
"Statistics and Data Science", "Statistics and Data Analytics", and
still fewer with sole theme "(Applied) Statistics".

Good message: Joint theme conferences (research monographs,
textbooks, ....) and university curricula of Data Science study programs
incl. sound education in statistics are gaining ground!

Main Drivers of recent developments/ trends have been
Availability of massive data sets
Modern Computer Technology and Computing Environments

Essential role of Probability Theory, Information Theory and Statistics
is getting more and more acknowledged! But, we need to double our
efforts to propagate the underlying probabilistic and statistical basis of
Data Science and and our contributions to it!
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Introduction

“Statistics is the grammar of science.” Karl Pearson (1892)
“Those who ignore statistics are condemned to reinvent it. Statistics is
the science of learning from experience.” Bradley Efron (2006)
“Data can tell lies. – Big Data can tell bigger lies. – The big thing for
small data is random error. – The big thing for big data is bias.”
Chris Wild (2017)

Fundamental ideas in statistics: uncertainty and variation.
Two of these key developments over the last decades are
bootstrapping (Bradley Efron, 1979) and Monte Carlo Markov Chain
(MCMC, Gelfand and Smith 1990) methods, which make it possible to
compute large hierarchical models, e.g. in Bayesian statistics,
computational physics and chemistry, computational biology and
linguistics, etc.

The widespread use of such powerful computational tools would have
been impossible without the emergence of the statistical programming
language R (released in 1993)
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A Very Dangerous Data Science Article
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What is Data Science?
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Different Backgrounds

Data Scientists usually come from an engineering background
Statisticians have been trained at Mathematics Departments with
specialization in Statistics
Classical (Frequentist) vs. Bayesian Statistics
The Bayesians Have Won Data Science
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Bayesian Origins

However, it has been a long race! When I started teaching Bayesian
Statistics and Decision Analysis in 1979 after having obtained a PhD
with a thesis on Bayesian regression estimation and design the
academic scene in statistics was heavily dominated by frequentist
statistics with the exception of some UK universities (London,
Nottingham, Warwick) and US universities (UCLA, Purdue, Ohio SU,
Minnesota, Duke).
In Central Europe: some Italian and French Bayesian statisticians (de
Finetti, Christian Robert)
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Bayesian Origins

Good historic account in the paper by
S.E. Fienberg: When Did Bayesian Inference Become "Bayesian"?
Bayesian Analysis Vol 1 (2006)
Raiffa, H. and Schlaifer, R. (1961). Applied Statistical Decision Theory.
Division of Research Graduate School of Business Administration,
Harvard University.
DeGroot, M. A. (1970). Optimal Statistical Decisions. McGraw-Hill.
Zellner, A. (1971). An Introduction to Bayesian Inference in
Econometrics. New York: Wiley.
J.O. Berger: Statistical Decision Theory. Springer 1985
Ch. Robert: The Bayesian Choice. Springer 1997
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J.O. Berger (left): Springer 1985, Ch.P. Robert (right): Springer 1997
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My own modest early contributions

J. Pilz: ... Teubner ed. (left) 1983, ext. lic. ed. by Wiley (right) 1991
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Frequentist vs. Bayesian Statistics

Main differences:
For a Bayesian, all model parameters are random
Bayesian inference is conditional on a fixed data set
Frequentists want to repeat the experiment

Questions:
How does Bayesian inference connect with Statistical/Machine
Learning principles?
How do we effectively teach our DS students the basics of
probability theory, (Bayesian) Statistics and Decision Analysis?
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Probabilistic Machine Learning

Ideal starting point for planning effective DS Curriculum:

Ghahramani, Z. (2015): Probabilistic machine learning and artificial
intelligence. Nature 521:452-459

Probabilistic modelling provides a framework for understanding
what learning is
Probabilistic framework describes how to represent and
manipulate uncertainty about models and predictions
PM plays a central role in scientific data analysis, machine
learning, robotics, cognitive science, and artificial intelligence.

Article provides an introduction to this probabilistic framework, and
reviews some state-of-the-art advances in the field, namely:

Probabilistic programming, Bayesian optimisation
Data compression, and automatic model discovery.
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Perfect textbook

K.P. Murphy: Probabilistic Machine Learning. MIT Press 2022, 2023
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Most important concepts

Creative Task of Statisticians: Data Modelling
Note: "All models are wrong, but some of them are useful"
(George E.P. Box 1978)

Looking into Data Science/ML books: Regression and Classification
(Models) dominate the contents

Basically, the underlying concept for both is the same:

Conditional Expectation E[Y |x1, . . . , xk ] = f (x1, . . . , xk )

Continuous Y : Regression case
Discrete (multinomial) Y : Classification case

In this talk: deal with both central topics

Regression: Linear regression ... Gen. linear (mixed) regression
... Additive regression ... Gaussian Process regression

Classification: Clustering ... Bayes Deep Learning
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Bayes’s Formula

P(Hk |Data) =
P(Data|Hk ) · P(Hk )
n∑

i=1
P(Data|Ai) · P(Hi)

where Hk = Hypotheses (causes, model parameters), k = 1, . . . ,n
Important in engineering and medicine: root cause analysis
For further applications in art sciences, literature, music, ... see
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Bayes’s Formula

Continuous Bayes learning with pdf’s rarely known from BSc curricula:
We start with a model (likelihood) p(x |θ) for the observed data
x = (x1, . . . , xn)

T given a vector of unknown parameters θ

We add a prior (probability) density p(θ)
The posterior density of θ is then given by

p(θ|x) = p(x |θ)p(θ)∫
Θ

p(x |θ)p(θ)dθ
=

p(x |θ)p(θ)
p(x)

where Θ denotes the parameter space
This is often written as

posterior ∝ likelihood ∗ prior

since p(x) is just a normalizing constant
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Bayesian Decision Theory

Probabilistic treatment is not only a technical aspect,
it provides a lot of advantages

The Bayesian approach expands the class of models and easily
handles settings that are precluded in classical settings:
Regularization of ill-posed problem settings

Moreover, we have complete class theorems from Statistical
Decision Theory stating that, for any non-Bayesian decision
(estimator, test, predictor), there is a Bayes decision which is at
least as good (usually even better).

(Maximum) likelihood results are often obtained as limiting
Bayesian results w.r.t. vague or non-informative priors
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Bayesian Decision Theory

Bayesian statistical inference (point and interval estimation, hypothesis
testing) follow from posterior summaries. For example, the posterior
means/medians/modes offer point (MAP) estimates of θ, while the
quantiles yield credible intervals.

Finding an optimal decision d requires an evaluation criterion,
called loss function for decisions (estimates, predictions,...) : L(θ,d)

Bayesian decision principle:

Integrate over Θ to get the posterior expected loss

E [L(θ,d)|x ] =
∫
Θ

L(θ,d) ∗ p(θ|x)dθ

and minimize w.r.t. d
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Software for Bayesian Inference

Generic packages with R-links:
- WinBUGS, www.mrc-bsu.cam.ac.uk/bugs/
- STAN, https://mc-stan.org
- NIMBLE, https://r-nimble.org

More recently developed tool:
BayesianTools (Hartig et al. 2017)
can run different MCMC algorithms

Bayes linear and generalized linear (mixed) models:
- MCMCpack
- MCMCglmm

R package for learning and first steps:
LearnBayes (1- and 2-param. problems)

CRAN repository of R, "Task View for Bayesian Inference":
https://cran.r-project.org/web/views/Bayesian.html.
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Software for Bayesian Inference

van Niekerk, J. and Rue, H. (2021). Correcting the Laplace method
with variational Bayes. arXiv preprint 2111.12945.

New Bayesian tool: INLA (well-known from Bayesian spatial statistics)

Wang, X., Yue, Y. and Faraway, J. J. (2018). Bayesian regression
modeling with INLA. New York: Chapman & Hall/CRC.

van Niekerk, J., Krainski, E., Rustand, D. and Rue, H. (2023). A new
avenue for Bayesian inference with INLA. Computational Statistics &
Data Analysis, 181, 107692.
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Teaching Problems

Within (university) Master curricula in Mathematics you have plenty of
time to make a deep dive into the many facets of Bayesian Statistics:

Bayesian Multivariate Statistics, Bayesian Time Series Analysis
Bayesian Decision Analysis
Bayes linear, generalized linear and additive models
Bayesian Computing
....

Reason: You can build on sufficient basics knowledge in
Maths/Probability Theory and Statistics from BSc curriculum

Remark: During my university career, spanning more than 40 years
now, I have designed and taught > 30 different statistics courses, incl.
an early course on "Neural Networks" in 1998, based on Brian Ripley’s
R-package nnet and Timothy Master’s book "Advanced Algorithms for
Neural Networks - A C++ Sourcebook", Wiley 1995
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Starting from BSc in Engineering and Economics

How to manage teaching the essential elements of modern Bayesian
Probability and Statistics in a Master course "Applied Data Science",
e.g. such as that at
Carinthian University of Applied Science in Villach, Austria, which
started in Fall 2021

https://www.fh-kaernten.at/en/study-program/
engineering-it/master/applied-data-science

Information and Probability Theory (Module 1.1)
Combinatorics and enumeration: permutations, variations and
combinations with and without replication
Different definitions of probability: classical approach (Laplace),
axiomatic approach (Kolmogorov), relative frequency
Conditional and total probability, independence, inverse probability
(Bayes Formula), random variables (rv’s)
Basic discrete distributions: Binomial, Poisson, geometric,
NegBinomial Distribution
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Bayesian Statistics and Advanced Topics

Basic continous distributions: uniform, Gaussian, Student-t-,
Exponential, Gamma, Beta, Weibull and Lognormal d.
Characteristic quantities and functions of probability distributions:
mean, variance, skewness, kurtosis, p-quantile, moment
generating function, Jacobi-transformation, law of large numbers
and central limit theorem
Multivariate distributions: multinomial, multivariate Gaussian,
Dirichlet d., correlations and covariances, transformations
(convolution and ratio of rv’s) and Jacobian matrix
Introduction into information theory: binary entropy, Hamming
code, entropy and relative entropy (Kullback-Leibler divergence),
conditional entropy and differential entropy
(Shannon-) information measures: conditional and mutual
(multivariate) information
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Module Bayesian Statistics

Bayesian Statistics (within Module 1.2 Statistics)
Bayes rule for probability densities
Conjugate priors, Bayes estimates
Predictive distributions
Bayes credible regions
Bayesian software (LearnBayes, BayesianTools)

Start with motivating example: (exteremely) rare events,
where classical Maximum Likelihood approaches collapse.

Jürgen Pilz (AAU Klagenfurt) World Conference on DSS, Frankfurt June 27, 2023 24 / 61



Bayes Credible Intervals
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Module Advanced Topics

Advanced Topics: Markov Chain Modeling, Time Series Modeling and
Analysis, Intro to Bayesian Deep Learning Models (Module 7.1)

Markov Chains: transition matrix, recurrent and transient states,
ergodic distributions, steady states, first passage time and
recurrence time, random walks and other applications
Monte-Carlo Markov Chain methods for Bayes statistical
computing: Gibbs sampling, Metropolis-Hastings- Algorithm
Time series modeling: white noise, autoregression, filtered series,
trend and auto-covariance function, moving average models,
stationarity, differencing, ARIMA models, seasonality, Holt-Winters
smoothing, R- and Python libraries for statistical and deep
learning time series analysis
Bayes linear and generalized linear regression modeling
Gaussian Processes (GP) for Regression and Classification: treed
Gaussian processes, stationary and non-stationary Gaussian
processes, covariance functions, surrogate models, additive GP,
deep Gaussian process modeling
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Module Advanced Topics

Decision Analysis, Loss functions, Risk notions, Bayes risk
Regularization methods for Deep Learning: Bagging and other
Ensemble methods, Early stopping, Dropout, Data augmentation,
Sparse Deep NNs, Bayesian NNs
Bayes Deep Learning Models: Bayesian Classification, Kernel
methods, NN architectures for Image and 3D-Point Cloud
segmentation (LeNet, GoogLeNet, . . . ., PointNet), Uncertainty
Evaluation in (Bayesian) DNNs

Central Role of Gaussian Process Regression:
Flexible nonparametric framework based on stochastic processes.
Comprehensive introduction is given in the textbook by
Rasmussen, and Williams.

as limits of BNN (N. Polson Bayesian Analysis 2017, implicit
already in papers/books by R. Neal 1996,2002,...)
regularization by reference priors for parameters of covariance
kernel
space-filling designs: suitable modifications of LHD)

Jürgen Pilz (AAU Klagenfurt) World Conference on DSS, Frankfurt June 27, 2023 27 / 61



II. Gaussian Process Regression

Start with specific application:
Stress testing in semiconductor processing for thin wafers
(thickness≤ 40µm)
Kriging metamodel for stress prediction validated against Ramann
spectroscopy measurements, FEM simulations
+ Modelling of electrical parameters (signals)
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Gaussian Process Regression

Regular (left) and latin hypercube design (right)
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Gaussian Process Regression

Fig.. Maximin (left) and Minimax (right) designs
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Gaussian Process Regression
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Gaussian Process Regression
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Robust Additive Gaussian Processes

Aims
higher flexibility in meta-modelling
numerical stability: robustness of parameter estimates, esp. for
correlation parameters

Solution: Bayesian approach using additive models and (objective)
reference priors

Side effect: high-dimensional optimization problems reduced to a few
sub-routines of ≤ 3 dimensions

Additive model:

EY (x) = f0 +
k∑

i=1
fi(xi) +

∑
i<j

fij(xi , xj) + . . .+ f12...k (x1,..., xk )

Functional ANOVA Representation
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Robust Additive Gaussian Processes

Novelty of our recently proposed concept: Combination of AGP with
robust reference priors proposed by Gu, Wang and Berger (AS 2018)
+ new sampling design scheme

Our new model: Second order Kriging AGP with

fi ∼ N(µi , σ
2Ri)

fij ∼ N(µij , σ
2RiRj)

Result: AGP Y (x) ∼ N(µ, σ2R(·, ·)), locally constant trend

and R(x,x′
) =

k∑
i=1

Ri(xi , x
′

i ) +
k∑

i=1

k∑
j=i+1

Ri(xi , x
′

i )Rj(xj , x
′

j ) + δxx′ τ2
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Robust Additive Gaussian Processes

Profile likelihood approach often fails!
Remedy: robust Bayes prediction using reference priors of the form

πR(µ, σ2, θ∗) = πR(θ∗)
σ2

↓
correl. parameters

R-implementation fully described in
Vollert, Ortner & Pilz (2019): Robust Additive Gaussian Process
Models Using Reference Priors and Cut-Off-Designs, J. Applied
Mathematical Modelling 65 (2019), 586-596
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Automotive Application

AGP modelling based on FEMs for
geometric and material parameter optimization problems, e.g.
Magnetic field shaping for position and orientation detection systems
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Spike and slab

Intelligent use of Bayesian ideas can provide performance gains, even
for the common and still most widely used multiple linear regression
models.

These Bayesian methods belong to the so-called spike and slab
approaches: use mixture priors, with a spike concentrated around zero
and a comparably flat slab, to perform variable selection.

Note: spike and slab priors are also applied apart from classical
regression approaches. E.g. Polson (2011) used this type of priors to
regularize support vector machines.

In our recent paper Posch, Arbeiter and Pilz (2020): use of these ideas
in combination with variable selection, setting is based on a random
set A ⊆ {1, ...,p} that holds the indices of the active predictors, i.e. the
predictors with coefficients different from zero.
We assign a prior to A which depends on the cardinality of the set |A|
as well as on the actual elements of A
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Penalized Zellner g-prior

Also, to overcome problems with singularity of XT
AXA for k > n, we

consider a ridge penalized version of the g-prior:

βA|g, σ2,XA ∼ N (0, (g−1σ−2XT
AXA + λIk )−1),

with small λ > 0 and complete hierarchical representation

p(A = {α1, ..., αk}) ∝ (pα1 + ...+ pαk )
1
k

p̃(k),

g ∼ IG
(

1
2
,
n
2

)
,

σ2 ∼ IG (a,b)

Our main result: model specifications are consistent in terms of
model selection:

p lim
n→∞

p(MA|y,X) = 1 and p lim
n→∞

p(MA′ |y,X) = 0 for all A′ ̸= A,

i.e. the true model will be selected provided we have enough data.
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Data sets

Real-world studies, incl. The diabetes data set (Efron 2004), see
R-package care

Predictors: age, sex, body mass index, average blood pressure, and
six blood serum measurements, measured from n = 442 diabetes
patients.

Target variable: quantitative measure of disease progression one year
after baseline.
Burn-in: 10,000 samples are deleted,
Thinning: every 10-th one is deleted.
For each of the observed Bayesian models 50,000 (dependent)
samples are generated
Performing a 5-fold cross-validation, the proposed approach achieves
the lowest MMSE as well as the lowest MMAD and thus performs
better than all methods under comparison.
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MMSE and MMAD

Method MMSE MMAD

Our approach 0.4873534 0.5678801
Lasso 0.492067 0.571596
Adaptive lasso 0.4939229 0.5736721
Elastic net 0.4922686 0.5706994
Bayesian lasso 0.4924316 0.5736084
Bayesian adaptive lasso 0.4997307 0.5786672
Bayesian elastic net 0.4895844 0.5727555
Horseshoe 0.4903684 0.5711527
Horseshoe+ 0.4919946 0.5727804
Spike and slab (VI) 0.5179594 0.5894747
Spike and slab (EM) 0.4893634 0.568348
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IV. Bayesian Deep Learning

Popularity of Deep Learning is increasing rapidly: excellent results in
many fields of applied machine learning, including computer vision and
natural language processing

Excellent overview in Goodfellow, Bengio and Courville:
Deep Learning. MIT Press 2016

Note: Deep NNs act as Gaussian Processes, see Lee et al. 2018

Bayesian DL overcomes drawbacks of classical DL:

Network parameters are treated as random variables
Uncertainty regarding parameters is directly translated into
uncertainty about predictions
Robustness to overfitting (built-in regularization)

We need, however, ABC methods to compute posteriors
Laplace approximation
Variational inference, usually with independent Gaussians

Note: Dropout regularization (Gal and Ghahramani 2015) acts like VI
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Measuring Uncertainty in Deep Neural Networks

Novel approach for training DNNs using Bayesian techniques
presented in
K. Posch and J. Pilz: Correlated Parameters to Accurately Measure
Uncertainty in Deep Neural Networks. IEEE Transactions on Neural
Networks and Learning Systems, Vol. 32 (2021) No. 3, 1037 - 1051

Our novelty comprises
variational distribution as product of multiple multivariate normals
with tridiagonal covariance matrices
correlations are assumed to be identical ⇒ only a few additional
parameters need to be optimized

Rationale: Dependent tridiagonal (instead of diagonal only)
Gaussians effect an exchange of information between NN layers and
neurons

Also, our approach allows an easy evaluation of model uncertainty and
is robust to overfitting
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Prediction uncertainty

Note: Variational Bayes is just a specific case of local α-divergence
minimization:
α-divergence between two densities p(w) and q(w) is given by

Dα(p(w)||q(w)) =
1

α(1 − α)

(
1 −

∫
p(w)αq(w)(1−α) dw

)
α-divergence converges for α → 0 to the Kullback-Leibler (KL)
divergence typically used in variational Bayes. We used a product of
tridiagonal Gaussians as variational density q(·). Moreover, note that

Prediction uncertainty = Epistemic (model) uncertainty
+ Aleatoric (observational) uncertainty

Let W denote the rv covering all parameters (weights and biases) of a
given neural net f. Further, let p(w) denote the prior regarding W.
According to the Bayes’s theorem the posterior distribution of W is
given by the density

Jürgen Pilz (AAU Klagenfurt) World Conference on DSS, Frankfurt June 27, 2023 44 / 61



KL divergence

p(w|y,X) =
p(y|w,X)p(w)∫

p(y|w,X)p(w) dw

where X = {x1, ...,xβ} denotes a set of training examples and
y = (y1, ..., yβ)T holds the corresponding class labels.
Note that p(y|w,X) =

∏β
i=1 f(xi ;w)yi

The integral above is commonly intractable due to its high dimension
β. Variational inference aims at approximating the posterior with the
so-called variational density qϕ(w). The variational parameters ϕ are
optimized by minimizing the KL divergence

DKL(qϕ(w)||p(w|y,X)) = Eqϕ(w)

(
ln

qϕ(w)

p(w|y,X)

)
Since the posterior is unknown this divergence cannot be minimized
directly. However, minimization of DKL is equivalent to the minimization
of so-called
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ELBO

negative log evidence lower bound

LVI = −Eqϕ(w) [lnp(y|w,X)] + DKL(qϕ(w)||prior p(w))

Commonly, mini-batch gradient descent is used for optimization

Summing up:
Frequentist deep learning penalizes (Euclidean) norm of w
Bayesian deep learning penalizes deviations of the variational
distribution from the prior.
Crucial difference: sampled network parameters.
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Tridiagonal Gaussians

Choosing

Lj :=


aj1
cj1 aj2

cj2 aj3
. . . . . .

cj,Kj−1 ajKj


we end up with a tridiagonal cov. matrix Σj with equal correlations

To train a neural net f(·,w) we need the partial derivatives of the
approximation L̂VI with respect to all variational parameters.

Note: Loss function L = negative log likelihood of the data, i.e.
L = cross-entropy loss in case of classification and
L = Euclidean loss in case of regression.
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Implementation

We have implemented the proposed approach by modifying and
extending the popular open-source
Deep Learning framework Caffe (Jia et al. 2014).

The Pseudocode of our implementation is presented in our paper.

Performance evaluation
Comparison includes the frequentist approach, the proposed approach
without correlations (see Steinbrener, Posch and Pilz 2020), and,
finally, the popular approach which applies dropout before every weight
layer in terms of a Bernoulli variational distribution (Gal and
Ghahramani 2015).

Criteria: prediction accuracy and quality of the uncertainty information
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3D Point Clouds

Modification: Bayes Deep Learning for 3D point cloud segmentation
Application in Automotive Industry, BMW Group Munich-Germany

Two recent publications in MDPI journals ”Entropy 2021" and
"Modelling 2021"
Joint work with my youngest PhD Christina Petschnigg:
Ch. Petschnigg and J. Pilz: Uncertainty Estimation in Deep Neural
Networks for Point Cloud Segmentation in Factory Planning. Modelling
2021, 1, 1-17

Ch. Petschnigg, M. Spitzner, L. Weitzendorf and J. Pilz, From a Point
Cloud to a Simulation Model—Bayesian Segmentation and Entropy
Based Uncertainty Estimation for 3D Modelling. Entropy 23 (2021)
301, 1 - 27
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BMW Assembly Line
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Data recording

Classes: Car, Hanger, Floor, Band, Lineside, Wall, Column, Ceiling,
Clutter
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Concluding Notes

Please, also have a look at our most recent contributions to merging
ideas from Machine Learning and Bayesian Statistics:

Anna Jenul, Stefan Schrunner, Jürgen Pilz and Oliver Tomic:
A user-guided Bayesian framework for ensemble feature selection in
life science applications (UBayFS).
Machine Learning (2022) 111:3897 – 3923

Konstantin Posch, Christian Truden, Philipp Hungerländer and Jürgen
Pilz: A Bayesian approach for predicting food and beverage sales in
staff canteens and restaurants.
Int. Journal of Forecasting 38 (2022), 321-338

Importance of information-theoretic concepts for approximating the
posterior distribution!
New promising research avenue:
Generalized Variational Inference
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